The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Convexities of Gaussian integral means and weighted integral means for analytic functions

Haiying LiTaotao Liu — 2019

Czechoslovak Mathematical Journal

We first show that the Gaussian integral means of f : (with respect to the area measure e - α | z | 2 d A ( z ) ) is a convex function of r on ( 0 , ) when α 0 . We then prove that the weighted integral means A α , β ( f , r ) and L α , β ( f , r ) of the mixed area and the mixed length of f ( r 𝔻 ) and f ( r 𝔻 ) , respectively, also have the property of convexity in the case of α 0 . Finally, we show with examples that the range α 0 is the best possible.

Page 1

Download Results (CSV)