Interlacement percolation on transient weighted graphs.
In this paper we establish a decoupling feature of the random interlacement process at level , . Roughly speaking, we show that observations of restricted to two disjoint subsets and of are approximately independent, once we add a sprinkling to the process by slightly increasing the parameter . Our results differ from previous ones in that we allow the mutual distance between the sets and to be much smaller than their diameters. We then provide an important application of this...
We study the trajectory of a simple random walk on a -regular graph with ≥ 3 and locally tree-like structure as the number of vertices grows. Examples of such graphs include random -regular graphs and large girth expanders. For these graphs, we investigate percolative properties of the set of vertices not visited by the walk until time , where > 0 is a fixed positive parameter. We show that this so-called set exhibits a phase transition in in the following sense: there exists an explicitly...
Page 1