The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let and be a positive integer. Let be a locally bounded map such that for each , the derivatives , , exist and are continuous. In order to conclude that any such map is necessarily of class it is necessary and sufficient that be not contained in the zero-set of a nonzero homogenous polynomial which is linear in and homogeneous of degree in . This generalizes a result of J. Boman for the case . The statement and the proof of a theorem of Boman for the case is also extended...
A nonlinear generalization of convergence sets of formal power series, in the sense of Abhyankar-Moh [J. Reine Angew. Math. 241 (1970)], is introduced. Given a family of analytic curves in ℂ × ℂⁿ passing through the origin, of a formal power series f(y,t,x) ∈ ℂ[[y,t,x]] is defined to be the set of all s ∈ ℂ for which the power series converges as a series in (t,x). We prove that for a subset E ⊂ ℂ there exists a divergent formal power series f(y,t,x) ∈ ℂ[[y,t,x]] such that if and only if...
Download Results (CSV)