Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

On Boman's theorem on partial regularity of mappings

Tejinder S. Neelon — 2011

Commentationes Mathematicae Universitatis Carolinae

Let Λ n × m and k be a positive integer. Let f : n m be a locally bounded map such that for each ( ξ , η ) Λ , the derivatives D ξ j f ( x ) : = d j d t j f ( x + t ξ ) | t = 0 , j = 1 , 2 , k , exist and are continuous. In order to conclude that any such map f is necessarily of class C k it is necessary and sufficient that Λ be not contained in the zero-set of a nonzero homogenous polynomial Φ ( ξ , η ) which is linear in η = ( η 1 , η 2 , , η m ) and homogeneous of degree k in ξ = ( ξ 1 , ξ 2 , , ξ n ) . This generalizes a result of J. Boman for the case k = 1 . The statement and the proof of a theorem of Boman for the case k = is also extended...

On convergence sets of divergent power series

Buma L. FridmanDaowei MaTejinder S. Neelon — 2012

Annales Polonici Mathematici

A nonlinear generalization of convergence sets of formal power series, in the sense of Abhyankar-Moh [J. Reine Angew. Math. 241 (1970)], is introduced. Given a family y = φ s ( t , x ) = s b ( x ) t + b ( x ) t ² + of analytic curves in ℂ × ℂⁿ passing through the origin, C o n v φ ( f ) of a formal power series f(y,t,x) ∈ ℂ[[y,t,x]] is defined to be the set of all s ∈ ℂ for which the power series f ( φ s ( t , x ) , t , x ) converges as a series in (t,x). We prove that for a subset E ⊂ ℂ there exists a divergent formal power series f(y,t,x) ∈ ℂ[[y,t,x]] such that E = C o n v φ ( f ) if and only if...

Page 1

Download Results (CSV)