The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Daugavet centers and direct sums of Banach spaces

Tetiana Bosenko — 2010

Open Mathematics

A linear continuous nonzero operator G: X → Y is a Daugavet center if every rank-1 operator T: X → Y satisfies ||G + T|| = ||G|| + ||T||. We study the case when either X or Y is a sum X 1⊕F X 2 of two Banach spaces X 1 and X 2 by some two-dimensional Banach space F. We completely describe the class of those F such that for some spaces X 1 and X 2 there exists a Daugavet center acting from X 1⊕F X 2, and the class of those F such that for some pair of spaces X 1 and X 2 there is a Daugavet center...

Page 1

Download Results (CSV)