Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Sur les corps de Hilbert-Speiser

Thomas Herreng — 2005

Journal de Théorie des Nombres de Bordeaux

On dit qu’un corps est de Hilbert-Speiser en un premier p si toute extension modérée abélienne finie de degré p admet une base normale entière. On dit qu’un corps est de Hilbert-Speiser s’il est de Hilbert-Speiser pour tout premier p . Il est bien connu que est un tel corps. Dans un article [3] de 1998, Greither, Replogle, Rubin et Srivastav ont montré que était le seul corps de Hilbert-Speiser. On donne ici une condition nécessaire et suffisante pour qu’un corps soit de Hilbert-Speiser en p = 2 ....

Page 1

Download Results (CSV)