Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Entropy of probability kernels from the backward tail boundary

Tim Austin — 2015

Studia Mathematica

A number of recent works have sought to generalize the Kolmogorov-Sinai entropy of probability-preserving transformations to the setting of Markov operators acting on the integrable functions on a probability space (X,μ). These works have culminated in a proof by Downarowicz and Frej that various competing definitions all coincide, and that the resulting quantity is uniquely characterized by certain abstract properties. On the other hand, Makarov has shown that this 'operator...

The Geometry of Model Spaces for Probability-Preserving Actions of Sofic Groups

Tim Austin — 2016

Analysis and Geometry in Metric Spaces

Bowen’s notion of sofic entropy is a powerful invariant for classifying probability-preserving actions of sofic groups. It can be defined in terms of the covering numbers of certain metric spaces associated to such an action, the ‘model spaces’. The metric geometry of these model spaces can exhibit various interesting features, some of which provide other invariants of the action. This paper explores an approximate connectedness property of the model spaces, and uses it give a new proof that certain...

Extensions of probability-preserving systems by measurably-varying homogeneous spaces and applications

Tim Austin — 2010

Fundamenta Mathematicae

We study a generalized notion of a homogeneous skew-product extension of a probability-preserving system in which the homogeneous space fibres are allowed to vary over the ergodic decomposition of the base. The construction of such extensions rests on a simple notion of 'direct integral' for a 'measurable family' of homogeneous spaces, which has a number of precedents in older literature. The main contribution of the present paper is the systematic development of a formalism for handling such extensions,...

Multi-variate correlation and mixtures of product measures

Tim Austin — 2020

Kybernetika

Total correlation (‘TC’) and dual total correlation (‘DTC’) are two classical ways to quantify the correlation among an n -tuple of random variables. They both reduce to mutual information when n = 2 . The first part of this paper sets up the theory of TC and DTC for general random variables, not necessarily finite-valued. This generality has not been exposed in the literature before. The second part considers the structural implications when a joint distribution μ has small TC or DTC. If TC ( μ ) = o ( n ) , then μ is...

Page 1

Download Results (CSV)