The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 11 of 11

Showing per page

Order by Relevance | Title | Year of publication

Bounds for the (Laplacian) spectral radius of graphs with parameter α

Gui-Xian TianTing-Zhu Huang — 2012

Czechoslovak Mathematical Journal

Let G be a simple connected graph of order n with degree sequence ( d 1 , d 2 , ... , d n ) . Denote ( α t ) i = j : i j d j α , ( α m ) i = ( α t ) i / d i α and ( α N ) i = j : i j ( α t ) j , where α is a real number. Denote by λ 1 ( G ) and μ 1 ( G ) the spectral radius of the adjacency matrix and the Laplacian matrix of G , respectively. In this paper, we present some upper and lower bounds of λ 1 ( G ) and μ 1 ( G ) in terms of ( α t ) i , ( α m ) i and ( α N ) i . Furthermore, we also characterize some extreme graphs which attain these upper bounds. These results theoretically improve and generalize some known results.

Page 1

Download Results (CSV)