Condiciones suficientes de estabilidad para ecuaciones en derivadas parciales estocásticas con retardos.
The main aim of this paper is to study stochastic PDE's with delay terms. In fact, we prove existence and uniqueness of solutions (in Itô's sense) for a rather general type of stochastic PDE's with non-linear monotone operators and with delays.
We state some results on existence and uniqueness for the solution of non linear stochastic PDEs with deviating arguments. In fact, we consider the equation dx(t) + (A(t,x(t)) + B(t,x(a(t))) + f(t)dt = (C(t,x(b(t)) + g(t))dwt, where A(t,·), B(t,·) and C(t,·) are suitable families of non linear operators in Hilbert spaces, wt is a Hilbert valued Wiener process, and a, b are functions of delay. If A satisfies a coercivity condition and a monotonicity hypothesis, and if B, C are Lipschitz continuous,...
This paper addresses the stability study for nonlinear neutral differential equations. Thanks to a new technique based on the fixed point theory, we find some new sufficient conditions ensuring the global asymptotic stability of the solution. In this work we extend and improve some related results presented in recent works of literature. Two examples are exhibited to show the effectiveness and advantage of the results proved.
In this paperwe study a non-autonomous lattice dynamical system with delay. Under rather general growth and dissipative conditions on the nonlinear term,we define a non-autonomous dynamical system and prove the existence of a pullback attractor for such system as well. Both multivalued and single-valued cases are considered.
Page 1