The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We compute equations for the families of elliptic curves 9-congruent to a given elliptic curve. We use these to find infinitely many non-trivial pairs of 9-congruent elliptic curves over ℚ, i.e. pairs of non-isogenous elliptic curves over ℚ whose 9-torsion subgroups are isomorphic as Galois modules.
We perform descent calculations for the families of elliptic curves over with
a rational point of order or 7. These calculations give an estimate for the Mordell-Weil rank which we relate to the parity conjecture. We exhibit explicit elements of the Tate-Shafarevich group of order 5 and 7, and show that the 5-torsion of the Tate-Shafarevich group of an elliptic curve over may become arbitrarily large.
We report on a large-scale project to investigate the ranks of elliptic curves in a quadratic twist family, focussing on the congruent number curve. Our methods to exclude candidate curves include 2-Selmer, 4-Selmer, and 8-Selmer tests, the use of the Guinand-Weil explicit formula, and even 3-descent in a couple of cases. We find that rank 6 quadratic twists are reasonably common (though still quite difficult to find), while rank 7 twists seem much more rare. We also describe our inability to find...
Download Results (CSV)