The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We study a holomorphic equivariant cohomology built out of the Atiyah algebroid of an equivariant holomorphic vector bundle and prove a related localization formula. This encompasses various residue formulas in complex geometry, in particular we shall show that it contains as special cases Carrell-Liebermann’s and Feng-Ma’s residue formulas, and Baum-Bott’s formula for the zeroes of a meromorphic vector field.
Symplectic instanton vector bundles on the projective space ℙ3 constitute a natural generalization of mathematical instantons of rank-2. We study the moduli space I n;r of rank-2r symplectic instanton vector bundles on ℙ3 with r ≥ 2 and second Chern class n ≥ r, n ≡ r (mod 2). We introduce the notion of tame symplectic instantons by excluding a kind of pathological monads and show that the locus I n;r* of tame symplectic instantons is irreducible and has the expected dimension, equal to 4n(r + 1)...
Download Results (CSV)