The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Dichromatic number, circulant tournaments and Zykov sums of digraphs

Víctor Neumann-Lara — 2000

Discussiones Mathematicae Graph Theory

The dichromatic number dc(D) of a digraph D is the smallest number of colours needed to colour the vertices of D so that no monochromatic directed cycle is created. In this paper the problem of computing the dichromatic number of a Zykov-sum of digraphs over a digraph D is reduced to that of computing a multicovering number of an hypergraph H₁(D) associated to D in a natural way. This result allows us to construct an infinite family of pairwise non isomorphic vertex-critical k-dichromatic circulant...

On the heterochromatic number of circulant digraphs

Hortensia Galeana-SánchezVíctor Neumann-Lara — 2004

Discussiones Mathematicae Graph Theory

The heterochromatic number hc(D) of a digraph D, is the minimum integer k such that for every partition of V(D) into k classes, there is a cyclic triangle whose three vertices belong to different classes. For any two integers s and n with 1 ≤ s ≤ n, let D n , s be the oriented graph such that V ( D n , s ) is the set of integers mod 2n+1 and A ( D n , s ) = ( i , j ) : j - i 1 , 2 , . . . , n s . . In this paper we prove that h c ( D n , s ) 5 for n ≥ 7. The bound is tight since equality holds when s ∈ n,[(2n+1)/3].

Page 1

Download Results (CSV)