We provide a survey of properties of the Cesàro operator on Hardy and weighted Bergman spaces, along with its connections to semigroups of weighted composition operators. We also describe recent developments regarding Cesàro-like operators and indicate some open questions and directions of future research.
Let be a bounded operator on a complex Banach space . If is an open subset of the complex plane such that is of Kato-type for each , then the induced mapping has closed range in the Fréchet space of analytic -valued functions on . Since semi-Fredholm operators are of Kato-type, this generalizes a result of Eschmeier on Fredholm operators and leads to a sharper estimate of Nagy’s spectral residuum of . Our proof is elementary; in particular, we avoid the sheaf model of Eschmeier and...
Download Results (CSV)