The mathematical analysis of a heat equation and its solutions is a standard part of most textbook of applied mathematics and computational mechanics. However, serious problems from engineering practice do not respect formal simplifications of such analysis, namely at high temperatures, for phase-change materials, etc. This paper, motivated by the material design and testing of a high-temperature thermal accumulator, as a substantial part of the Czech-Swedish project of an original equipment for...
European directives and related national technical standards force the substantial reduction of energy consumption of all types of buildings. This can be done thanks to the massive insulation and the improvement of quality of building enclosures, using the simple evaluation assuming the one-dimensional stationary heat conduction. However, recent applications of advanced materials, structures and technologies force the proper physical, mathematical and computational analysis coming from the thermodynamic...
Development of engineering structures and technologies frequently works with advanced materials, whose properties, because of their complicated microstructure, cannot be predicted from experience, unlike traditional materials.
The quality of computational modelling of relevant physical processes, based mostly on the principles of classical thermomechanics, is conditioned by the reliability of constitutive relations, coming from simplified experiments. The paper demonstrates some possibilities of...
The thermal technical analysis is an important part of the design of building constructions. Especially for dwelling structures valid Czech(oslovak) and European standards formulate criteria of maximal thermal stability and minimal energy consumption that have to be verified by credible calculations. The propagation of heat through a building construction, consisting typically of several porous layers, is conditioned by the amount of moisture in such construction; simultaneously it is affected by...
Physical analysis of phase transformation of materials consisting from several (both substitutional and interstitial) components, coming from the Onsager extremal thermodynamic principle, leads, from the mathematical point of view, to a system of partial differential equations of evolution type, including certain integral term, with substantial differences in particular phases (, ) and in moving interface of finite thickness (),
in whose center the ideal liquid material behaviour can be detected....
Numerical simulations of time-dependent behaviour of advances structures need the analysis of systems of partial differential equations of hyperbolic type, whose semi-discretization, using the Fourier multiplicative decomposition together with the finite element or similar techniques, leads to large sparse systems of ordinary differential equations. Effective and robust methods for numerical evaluation of their solutions in particular time steps are required; thus still new computational schemes...
The hot-wire method, based on the recording of the temperature development in time in a testing sample, supplied by a probe with its own thermal source, is
useful to evaluate the thermal conductivity of materials under extremal loads, in particular in refractory brickworks. The formulae in the technical
standards come from the analytical solution of the non-stationary equation of heat conduction in cylindric (finally only polar) coordinates for a simplified formulation of boundary conditions,
neglecting...
New materials, structures and technologies used in civil engineering impeach traditional evaluations of the annual thermal consumption of buildings, based on the quasi-stationary estimate of the thermal resistance of the building envelope, or some operational parts of such building with the guaranteed temperature. The complete proper physical analysis, applying the principles of thermodynamics and appropriate constitutive relations for particular material layers and air in rooms, is not realistic...
The analysis of dynamic contacts/impacts of several deformable bodies belongs to both theoretically and computationally complicated problems, because of the presence of unpleasant nonlinearities and of the need of effective contact detection. This paper sketches how such difficulties can be overcome, at least for a model problem with several elastic bodies, using i) the explicit time-discretization scheme and ii) the finite element technique adopted to contact evaluations together with iii) the...
In a new micromechanical approach to the prediction of creep flow in composites with perfect matrix/particle interfaces, based on the nonlinear Maxwell viscoelastic model, taking into account a finite number of discrete slip systems in the matrix, has been suggested; high-temperature creep in such composites is conditioned by the dynamic recovery of the dislocation structure due to slip/climb motion of dislocations along the matrix/particle interfaces. In this article the proper formulation of the...
The aim of this paper is to demonstrate how the variational equations from can be formulated and solved in some abstract Banach spaces without any a priori construction of special linearization schemes. This should be useful e.g. in the analysis of heat conduction problems and modelling of flow in porous media.
Most non-trivial existence and convergence results for systems of partial differential equations of evolution exclude or avoid the case of a non-symmetrical parabolic part. Therefore such systems, generated by the physical analysis of the processes of transfer of heat and moisture in porous media, cannot be analyzed easily using the standard results on the convergence of Rothe sequences (e.g. those of W. Jäger and J. Kačur). In this paper the general variational formulation of the corresponding...
Modelling of macroscopic behaviour of materials, consisting of several layers or components, cannot avoid their microstructural properties. This article demonstrates how the method of Rothe, described in the book of K. Rektorys The Method of Discretization in Time, together with the two-scale homogenization technique can be applied to the existence and convergence analysis of some strongly nonlinear time-dependent problems of this type.
Computational analysis of quasi-brittle fracture in cement-based and similar composites, supplied by various types of rod, fibre, etc. reinforcement, is crucial for the prediction of their load bearing ability and durability, but rather difficult because of the risk of initiation of zones of microscopic defects, followed by formation and propagation of a large number of macroscopic cracks. A reasonable and complete deterministic description of relevant physical processes is rarely available. Thus,...
The widely used method for solution of impacts of bodies, called the penalty method, is based on the contact force proportional to the length of the interpenetration of bodies. This method is regarded as unsatisfactory by the authors of this contribution, because of an inaccurate fulfillment of the energy conservation law and violation of the natural demand of impenetrability of bodies. Two non-traditional methods for the solution of impacts of bodies satisfy these demands exactly, or approximately,...
Advanced building design is a rather new interdisciplinary research branch, combining knowledge from physics, engineering, art and social science; its support from both theoretical and computational mathematics is needed. This paper shows an example of such collaboration, introducing a model problem of optimal heating in a low-energy house. Since all particular function values, needed for optimization are obtained as numerical solutions of an initial and boundary value problem for a sparse system...
Download Results (CSV)