Numerical approaches to the modelling of quasi-brittle crack propagation
Archivum Mathematicum (2023)
- Volume: 059, Issue: 3, page 295-303
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topReferences
top- Altan, S., Existence in nonlocal elasticity, Arch. Mech. 47 (1989), 25–36. (1989)
- Bažant, Z.P., Why continuum damage is nonlocal: micromechanics arguments, J. Eng. Mech. 117 (1991), 1070–1089. (1991)
- Bermúdez de Castro, A., Continuum Thermomechanics, Birkhäuser, Basel, 2005. (2005) MR2145925
- Bybordiani, M., Dias da Costa, D., 10.1016/j.cma.2020.113652, Comput. Methods Appl. Mech. Eng. 376 (2021), 1–32, 113652. (2021) MR4200540DOI10.1016/j.cma.2020.113652
- de Vree, J.H.P., Brekelmans, W.A.M., van Gils, M.A.J., 10.1016/0045-7949(94)00501-S, Comput. Struct. 55 (1995), 581–588. (1995) DOI10.1016/0045-7949(94)00501-S
- Drábek, P., Milota, I., Methods of Nonlinear Analysis, Birkhäuser, Basel, 2013. (2013) MR3025694
- Eringen, A.C., Theory of Nonlocal Elasticity and Some Applications, Tech. report, Princeton University, Princeton, 1984. (1984)
- Evgrafov, A., Bellido, J.-C., 10.1177/1081286518810745, Math. Mech. Solids 24 (2019), 1935–1953. (2019) MR3954360DOI10.1177/1081286518810745
- Fasshauer, G.E., Ye, Q., 10.1007/s00211-011-0391-2, Numer. Math. 119 (2011), 585–611. (2011) MR2845629DOI10.1007/s00211-011-0391-2
- Fries, T.P., Belytschko, T., 10.1002/nme.1761, Int. J. Numer. Methods Eng. 68 (2006), 1358–1385. (2006) DOI10.1002/nme.1761
- Giry, C., Dufour, F., Mazars, J., 10.1016/j.ijsolstr.2011.08.012, Int. J. Solids Struct. 48 (2011), 3431–3443. (2011) DOI10.1016/j.ijsolstr.2011.08.012
- Hashiguchi, K., Elastoplasticity Theory, Springer Berlin, 2014. (2014) MR3235845
- Havlásek, P., Grassl, P., Jirásek, M., 10.1016/j.engfracmech.2016.02.029, Eng. Fract. Mech. 157 (2016), 72–85. (2016) DOI10.1016/j.engfracmech.2016.02.029
- Ju, J.W., Isotropic and anisotropic damage variables in continuum damage, J. Eng. Mech. 116 (1990), 2764–2770. (1990)
- Kamińska, I., Szwed, A., A thermodynamically consistent model of quasibrittle elastic damaged materials based on a novel Helmholtz potential and dissipation function, MDPI Materials 14 (2021), 1–30, 6323. (2021)
- Kozák, V., Chlup, Z., Padělek, P., Dlouhá, I., 10.4028/www.scientific.net/SSP.258.186, Solid State Phenomena 258 (2017), 186–189. (2017) DOI10.4028/www.scientific.net/SSP.258.186
- Li, H., Li, J., Yuan, H., 10.1016/j.tafmec.2018.08.008, Theor. Appl. Fract. Mech. 97 (2018), 236–249. (2018) DOI10.1016/j.tafmec.2018.08.008
- Mariani, S., Perego, U., 10.1002/nme.761, Int. J. Numer. Meth. Engn. 58 (2003), 103–126. (2003) MR1999981DOI10.1002/nme.761
- Mielke, A., Roubíček, T., Rate-Independent Systems, Springer, New York, 2015. (2015) MR3380972
- Mousavi, S.M., 10.1016/j.ijsolstr.2015.10.033, Int. J. Solids Struct. 87 (2016), 92–93, 105–120. (2016) DOI10.1016/j.ijsolstr.2015.10.033
- Peerlings, R.H.J., R.de Borst,, Brekelmans, W.A.M., Geers, M., Gradient enhanced damage modelling of concrete fracture, Int. J. Numer. Anal. Methods Geomech. 3 (1998), 323–342. (1998)
- Pijaudier-Cabot, G., Mazars, J., Damage models for concrete, Handbook of Materials Behavior Models (Lemaitre, J., ed.), Academic Press, Cambridge (Massachusetts, USA), 2001, pp. 500–512. (2001)
- Pike, M.G., Oskay, C., 10.1016/j.finel.2015.07.007, Finite Elem. Anal. Des. 106 (2015), 16–31. (2015) DOI10.1016/j.finel.2015.07.007
- Roubíček, T., Nonlinear Partial Differential Equations with Applications, Birkhäuser, Basel, 2005. (2005) MR2176645
- Skala, V., A practical use of radial basis functions interpolation and approximation, Investigación Operacional 37 (2016), 137–144. (2016) MR3479842
- Štekbauer, H., Němec, I., Lang, R., Burkart, D., ValaSte22, J., 10.21136/AM.2022.0129-21, Appl. Math. 67 (2022), 28 pp., in print. (2022) MR4505704DOI10.21136/AM.2022.0129-21
- Sumi, Y., Mathematical and Computational Analyses of Cracking Formation, Springer, Tokyo, 2014. (2014) MR3234571
- Sun, Y., Edwards, M.G., Chen, B., Li, C., A state-of-the-art review of crack branching, Eng. Fract. Mech. 257 (2021), 1–33, 108036. (2021)
- Szabó, B., Babuška, I., Finite Element Analysis: Method, Verification and Validation, J. Wiley & Sons, Hoboken, 2021. (2021) MR1164869
- Turner, M.J., Clough, R.W., Martin, H.C., Top, L.J., Stiffness and deflection analysis of complex structures, Journal of the Aeronautical Sciences 23 (1956), 805–823. (1956)
- Vala, J., 10.37394/232011.2021.16.31, WSEAS Trans. Appl. Theor. Mech. 16 (2021), 283–292. (2021) DOI10.37394/232011.2021.16.31
- Vala, J., Kozák, V., 10.1016/j.tafmec.2020.102486, Theor. Appl. Fract. Mech.. 107 (2020), 1–8, 102486. (2020) DOI10.1016/j.tafmec.2020.102486
- Vala, J., Kozák, V., 10.21136/AM.2021.0281-20, Appl. Math. 66 (2021), 701–721. (2021) MR4342610DOI10.21136/AM.2021.0281-20
- Vala, J., Kozák, V., Jedlička, M., 10.4028/www.scientific.net/SSP.325.59, Solid State Phenomena 325 (2021), 56–64. (2021) DOI10.4028/www.scientific.net/SSP.325.59
- Vilppo, J., Kouhia, R., Hartikainen, J., Kolari, K., Fedoroff, A., Calonius, K., 10.1016/j.ijsolstr.2021.111048, Int. J. Solids Struct. 225 (2021), 1–13, 111048. (2021) DOI10.1016/j.ijsolstr.2021.111048
- Zlámal, M., 10.1007/BF02161362, Numer. Math. 12 (1968), 394–409. (1968) DOI10.1007/BF02161362