Numerical approaches to the modelling of quasi-brittle crack propagation

Jiří Vala

Archivum Mathematicum (2023)

  • Issue: 3, page 295-303
  • ISSN: 0044-8753

Abstract

top
Computational analysis of quasi-brittle fracture in cement-based and similar composites, supplied by various types of rod, fibre, etc. reinforcement, is crucial for the prediction of their load bearing ability and durability, but rather difficult because of the risk of initiation of zones of microscopic defects, followed by formation and propagation of a large number of macroscopic cracks. A reasonable and complete deterministic description of relevant physical processes is rarely available. Thus, due to significance of such materials in the design and construction of buildings, semi-heuristic computational models must be taken into consideration. These models generate mathematical problems, whose solvability is not transparent frequently, which limits the credibility of all results of ad hoc designed numerical simulations. In this short paper such phenomena are demonstrated on a simple model problem, covering both micro- and macro-cracking, with references to needful generalizations and more realistic computational settings.

How to cite

top

Vala, Jiří. "Numerical approaches to the modelling of quasi-brittle crack propagation." Archivum Mathematicum (2023): 295-303. <http://eudml.org/doc/298991>.

@article{Vala2023,
abstract = {Computational analysis of quasi-brittle fracture in cement-based and similar composites, supplied by various types of rod, fibre, etc. reinforcement, is crucial for the prediction of their load bearing ability and durability, but rather difficult because of the risk of initiation of zones of microscopic defects, followed by formation and propagation of a large number of macroscopic cracks. A reasonable and complete deterministic description of relevant physical processes is rarely available. Thus, due to significance of such materials in the design and construction of buildings, semi-heuristic computational models must be taken into consideration. These models generate mathematical problems, whose solvability is not transparent frequently, which limits the credibility of all results of ad hoc designed numerical simulations. In this short paper such phenomena are demonstrated on a simple model problem, covering both micro- and macro-cracking, with references to needful generalizations and more realistic computational settings.},
author = {Vala, Jiří},
journal = {Archivum Mathematicum},
keywords = {computational mechanics; quasi-brittle fracture; nonlocal elasticity; smeared damage; extended finite element method},
language = {eng},
number = {3},
pages = {295-303},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Numerical approaches to the modelling of quasi-brittle crack propagation},
url = {http://eudml.org/doc/298991},
year = {2023},
}

TY - JOUR
AU - Vala, Jiří
TI - Numerical approaches to the modelling of quasi-brittle crack propagation
JO - Archivum Mathematicum
PY - 2023
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
IS - 3
SP - 295
EP - 303
AB - Computational analysis of quasi-brittle fracture in cement-based and similar composites, supplied by various types of rod, fibre, etc. reinforcement, is crucial for the prediction of their load bearing ability and durability, but rather difficult because of the risk of initiation of zones of microscopic defects, followed by formation and propagation of a large number of macroscopic cracks. A reasonable and complete deterministic description of relevant physical processes is rarely available. Thus, due to significance of such materials in the design and construction of buildings, semi-heuristic computational models must be taken into consideration. These models generate mathematical problems, whose solvability is not transparent frequently, which limits the credibility of all results of ad hoc designed numerical simulations. In this short paper such phenomena are demonstrated on a simple model problem, covering both micro- and macro-cracking, with references to needful generalizations and more realistic computational settings.
LA - eng
KW - computational mechanics; quasi-brittle fracture; nonlocal elasticity; smeared damage; extended finite element method
UR - http://eudml.org/doc/298991
ER -

References

top
  1. Altan, S., Existence in nonlocal elasticity, Arch. Mech. 47 (1989), 25–36. (1989) 
  2. Bažant, Z.P., Why continuum damage is nonlocal: micromechanics arguments, J. Eng. Mech. 117 (1991), 1070–1089. (1991) 
  3. Bermúdez de Castro, A., Continuum Thermomechanics, Birkhäuser, Basel, 2005. (2005) MR2145925
  4. Bybordiani, M., Dias da Costa, D., 10.1016/j.cma.2020.113652, Comput. Methods Appl. Mech. Eng. 376 (2021), 1–32, 113652. (2021) MR4200540DOI10.1016/j.cma.2020.113652
  5. de Vree, J.H.P., Brekelmans, W.A.M., van Gils, M.A.J., 10.1016/0045-7949(94)00501-S, Comput. Struct. 55 (1995), 581–588. (1995) DOI10.1016/0045-7949(94)00501-S
  6. Drábek, P., Milota, I., Methods of Nonlinear Analysis, Birkhäuser, Basel, 2013. (2013) MR3025694
  7. Eringen, A.C., Theory of Nonlocal Elasticity and Some Applications, Tech. report, Princeton University, Princeton, 1984. (1984) 
  8. Evgrafov, A., Bellido, J.-C., 10.1177/1081286518810745, Math. Mech. Solids 24 (2019), 1935–1953. (2019) MR3954360DOI10.1177/1081286518810745
  9. Fasshauer, G.E., Ye, Q., 10.1007/s00211-011-0391-2, Numer. Math. 119 (2011), 585–611. (2011) MR2845629DOI10.1007/s00211-011-0391-2
  10. Fries, T.P., Belytschko, T., 10.1002/nme.1761, Int. J. Numer. Methods Eng. 68 (2006), 1358–1385. (2006) DOI10.1002/nme.1761
  11. Giry, C., Dufour, F., Mazars, J., 10.1016/j.ijsolstr.2011.08.012, Int. J. Solids Struct. 48 (2011), 3431–3443. (2011) DOI10.1016/j.ijsolstr.2011.08.012
  12. Hashiguchi, K., Elastoplasticity Theory, Springer Berlin, 2014. (2014) MR3235845
  13. Havlásek, P., Grassl, P., Jirásek, M., 10.1016/j.engfracmech.2016.02.029, Eng. Fract. Mech. 157 (2016), 72–85. (2016) DOI10.1016/j.engfracmech.2016.02.029
  14. Ju, J.W., Isotropic and anisotropic damage variables in continuum damage, J. Eng. Mech. 116 (1990), 2764–2770. (1990) 
  15. Kamińska, I., Szwed, A., A thermodynamically consistent model of quasibrittle elastic damaged materials based on a novel Helmholtz potential and dissipation function, MDPI Materials 14 (2021), 1–30, 6323. (2021) 
  16. Kozák, V., Chlup, Z., Padělek, P., Dlouhá, I., 10.4028/www.scientific.net/SSP.258.186, Solid State Phenomena 258 (2017), 186–189. (2017) DOI10.4028/www.scientific.net/SSP.258.186
  17. Li, H., Li, J., Yuan, H., 10.1016/j.tafmec.2018.08.008, Theor. Appl. Fract. Mech. 97 (2018), 236–249. (2018) DOI10.1016/j.tafmec.2018.08.008
  18. Mariani, S., Perego, U., 10.1002/nme.761, Int. J. Numer. Meth. Engn. 58 (2003), 103–126. (2003) MR1999981DOI10.1002/nme.761
  19. Mielke, A., Roubíček, T., Rate-Independent Systems, Springer, New York, 2015. (2015) MR3380972
  20. Mousavi, S.M., 10.1016/j.ijsolstr.2015.10.033, Int. J. Solids Struct. 87 (2016), 92–93, 105–120. (2016) DOI10.1016/j.ijsolstr.2015.10.033
  21. Peerlings, R.H.J., R.de Borst,, Brekelmans, W.A.M., Geers, M., Gradient enhanced damage modelling of concrete fracture, Int. J. Numer. Anal. Methods Geomech. 3 (1998), 323–342. (1998) 
  22. Pijaudier-Cabot, G., Mazars, J., Damage models for concrete, Handbook of Materials Behavior Models (Lemaitre, J., ed.), Academic Press, Cambridge (Massachusetts, USA), 2001, pp. 500–512. (2001) 
  23. Pike, M.G., Oskay, C., 10.1016/j.finel.2015.07.007, Finite Elem. Anal. Des. 106 (2015), 16–31. (2015) DOI10.1016/j.finel.2015.07.007
  24. Roubíček, T., Nonlinear Partial Differential Equations with Applications, Birkhäuser, Basel, 2005. (2005) MR2176645
  25. Skala, V., A practical use of radial basis functions interpolation and approximation, Investigación Operacional 37 (2016), 137–144. (2016) MR3479842
  26. Štekbauer, H., Němec, I., Lang, R., Burkart, D., ValaSte22, J., 10.21136/AM.2022.0129-21, Appl. Math. 67 (2022), 28 pp., in print. (2022) MR4505704DOI10.21136/AM.2022.0129-21
  27. Sumi, Y., Mathematical and Computational Analyses of Cracking Formation, Springer, Tokyo, 2014. (2014) MR3234571
  28. Sun, Y., Edwards, M.G., Chen, B., Li, C., A state-of-the-art review of crack branching, Eng. Fract. Mech. 257 (2021), 1–33, 108036. (2021) 
  29. Szabó, B., Babuška, I., Finite Element Analysis: Method, Verification and Validation, J. Wiley & Sons, Hoboken, 2021. (2021) MR1164869
  30. Turner, M.J., Clough, R.W., Martin, H.C., Top, L.J., Stiffness and deflection analysis of complex structures, Journal of the Aeronautical Sciences 23 (1956), 805–823. (1956) 
  31. Vala, J., 10.37394/232011.2021.16.31, WSEAS Trans. Appl. Theor. Mech. 16 (2021), 283–292. (2021) DOI10.37394/232011.2021.16.31
  32. Vala, J., Kozák, V., 10.1016/j.tafmec.2020.102486, Theor. Appl. Fract. Mech.. 107 (2020), 1–8, 102486. (2020) DOI10.1016/j.tafmec.2020.102486
  33. Vala, J., Kozák, V., 10.21136/AM.2021.0281-20, Appl. Math. 66 (2021), 701–721. (2021) MR4342610DOI10.21136/AM.2021.0281-20
  34. Vala, J., Kozák, V., Jedlička, M., 10.4028/www.scientific.net/SSP.325.59, Solid State Phenomena 325 (2021), 56–64. (2021) DOI10.4028/www.scientific.net/SSP.325.59
  35. Vilppo, J., Kouhia, R., Hartikainen, J., Kolari, K., Fedoroff, A., Calonius, K., 10.1016/j.ijsolstr.2021.111048, Int. J. Solids Struct. 225 (2021), 1–13, 111048. (2021) DOI10.1016/j.ijsolstr.2021.111048
  36. Zlámal, M., 10.1007/BF02161362, Numer. Math. 12 (1968), 394–409. (1968) DOI10.1007/BF02161362

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.