The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

A Banach space dichotomy theorem for quotients of subspaces

Valentin Ferenczi — 2007

Studia Mathematica

A Banach space X with a Schauder basis is defined to have the restricted quotient hereditarily indecomposable property if X/Y is hereditarily indecomposable for any infinite-codimensional subspace Y with a successive finite-dimensional decomposition on the basis of X. The following dichotomy theorem is proved: any infinite-dimensional Banach space contains a quotient of a subspace which either has an unconditional basis, or has the restricted quotient hereditarily indecomposable property.

On the number of non-isomorphic subspaces of a Banach space

Valentin FerencziChristian Rosendal — 2005

Studia Mathematica

We study the number of non-isomorphic subspaces of a given Banach space. Our main result is the following. Let be a Banach space with an unconditional basis ( e i ) i ; then either there exists a perfect set P of infinite subsets of ℕ such that for any two distinct A,B ∈ P, [ e i ] i A [ e i ] i B , or for a residual set of infinite subsets A of ℕ, [ e i ] i A is isomorphic to , and in that case, is isomorphic to its square, to its hyperplanes, uniformly isomorphic to [ e i ] i D for any D ⊂ ℕ, and isomorphic to a denumerable Schauder decomposition...

Some strongly bounded classes of Banach spaces

Pandelis DodosValentin Ferenczi — 2007

Fundamenta Mathematicae

We show that the classes of separable reflexive Banach spaces and of spaces with separable dual are strongly bounded. This gives a new proof of a recent result of E. Odell and Th. Schlumprecht, asserting that there exists a separable reflexive Banach space containing isomorphic copies of every separable uniformly convex Banach space.

Page 1

Download Results (CSV)