The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Double sine series with nonnegative coefficients and Lipschitz classes

Vanda Fülöp — 2006

Colloquium Mathematicae

Denote by f s s ( x , y ) the sum of a double sine series with nonnegative coefficients. We present necessary and sufficient coefficient conditions in order that f s s belongs to the two-dimensional multiplicative Lipschitz class Lip(α,β) for some 0 < α ≤ 1 and 0 < β ≤ 1. Our theorems are extensions of the corresponding theorems by Boas for single sine series.

On the order of magnitude of Walsh-Fourier transform

Bhikha Lila GhodadraVanda Fülöp — 2020

Mathematica Bohemica

For a Lebesgue integrable complex-valued function f defined on + : = [ 0 , ) let f ^ be its Walsh-Fourier transform. The Riemann-Lebesgue lemma says that f ^ ( y ) 0 as y . But in general, there is no definite rate at which the Walsh-Fourier transform tends to zero. In fact, the Walsh-Fourier transform of an integrable function can tend to zero as slowly as we wish. Therefore, it is interesting to know for functions of which subclasses of L 1 ( + ) there is a definite rate at which the Walsh-Fourier transform tends to zero. We...

Page 1

Download Results (CSV)