On the order of magnitude of Walsh-Fourier transform

Bhikha Lila Ghodadra; Vanda Fülöp

Mathematica Bohemica (2020)

  • Volume: 145, Issue: 3, page 265-280
  • ISSN: 0862-7959

Abstract

top
For a Lebesgue integrable complex-valued function f defined on + : = [ 0 , ) let f ^ be its Walsh-Fourier transform. The Riemann-Lebesgue lemma says that f ^ ( y ) 0 as y . But in general, there is no definite rate at which the Walsh-Fourier transform tends to zero. In fact, the Walsh-Fourier transform of an integrable function can tend to zero as slowly as we wish. Therefore, it is interesting to know for functions of which subclasses of L 1 ( + ) there is a definite rate at which the Walsh-Fourier transform tends to zero. We determine this rate for functions of bounded variation on + . We also determine such rate of Walsh-Fourier transform for functions of bounded variation in the sense of Vitali defined on ( + ) N , N .

How to cite

top

Ghodadra, Bhikha Lila, and Fülöp, Vanda. "On the order of magnitude of Walsh-Fourier transform." Mathematica Bohemica 145.3 (2020): 265-280. <http://eudml.org/doc/297010>.

@article{Ghodadra2020,
abstract = {For a Lebesgue integrable complex-valued function $f$ defined on $\mathbb \{R\}^+:=[0,\infty )$ let $\hat\{f\}$ be its Walsh-Fourier transform. The Riemann-Lebesgue lemma says that $\hat\{f\}(y)\rightarrow 0$ as $y\rightarrow \infty $. But in general, there is no definite rate at which the Walsh-Fourier transform tends to zero. In fact, the Walsh-Fourier transform of an integrable function can tend to zero as slowly as we wish. Therefore, it is interesting to know for functions of which subclasses of $L^1(\mathbb \{R\}^+)$ there is a definite rate at which the Walsh-Fourier transform tends to zero. We determine this rate for functions of bounded variation on $\mathbb \{R\}^+$. We also determine such rate of Walsh-Fourier transform for functions of bounded variation in the sense of Vitali defined on $(\mathbb \{R\}^+)^N$, $N\in \mathbb \{N\}$.},
author = {Ghodadra, Bhikha Lila, Fülöp, Vanda},
journal = {Mathematica Bohemica},
keywords = {function of bounded variation over $\mathbb \{R\}^+$; function of bounded variation over $(\mathbb \{R\}^+)^2$; function of bounded variation over $(\mathbb \{R\}^+)^N$; order of magnitude; Riemann-Lebesgue lemma; Walsh-Fourier transform},
language = {eng},
number = {3},
pages = {265-280},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the order of magnitude of Walsh-Fourier transform},
url = {http://eudml.org/doc/297010},
volume = {145},
year = {2020},
}

TY - JOUR
AU - Ghodadra, Bhikha Lila
AU - Fülöp, Vanda
TI - On the order of magnitude of Walsh-Fourier transform
JO - Mathematica Bohemica
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 145
IS - 3
SP - 265
EP - 280
AB - For a Lebesgue integrable complex-valued function $f$ defined on $\mathbb {R}^+:=[0,\infty )$ let $\hat{f}$ be its Walsh-Fourier transform. The Riemann-Lebesgue lemma says that $\hat{f}(y)\rightarrow 0$ as $y\rightarrow \infty $. But in general, there is no definite rate at which the Walsh-Fourier transform tends to zero. In fact, the Walsh-Fourier transform of an integrable function can tend to zero as slowly as we wish. Therefore, it is interesting to know for functions of which subclasses of $L^1(\mathbb {R}^+)$ there is a definite rate at which the Walsh-Fourier transform tends to zero. We determine this rate for functions of bounded variation on $\mathbb {R}^+$. We also determine such rate of Walsh-Fourier transform for functions of bounded variation in the sense of Vitali defined on $(\mathbb {R}^+)^N$, $N\in \mathbb {N}$.
LA - eng
KW - function of bounded variation over $\mathbb {R}^+$; function of bounded variation over $(\mathbb {R}^+)^2$; function of bounded variation over $(\mathbb {R}^+)^N$; order of magnitude; Riemann-Lebesgue lemma; Walsh-Fourier transform
UR - http://eudml.org/doc/297010
ER -

References

top
  1. Adams, C. R., Clarkson, J. A., 10.2307/1989819, Trans. Am. Math. Soc. 36 (1934), 711-730 correction ibid. 46 page 468 1939. (1934) Zbl0010.19902MR1501762DOI10.2307/1989819
  2. Clarkson, J. A., Adams, C. R., 10.2307/1989593, Trans. Am. Math. Soc. 35 (1933), 824-854. (1933) Zbl0008.00602MR1501718DOI10.2307/1989593
  3. Edwards, R. E., 10.1007/978-1-4612-6208-4, Graduate Texts in Mathematics 64. Springer, New York (1979). (1979) Zbl0424.42001MR0545506DOI10.1007/978-1-4612-6208-4
  4. Fine, N. J., 10.2307/1990619, Trans. Am. Math. Soc. 65 (1949), 372-414. (1949) Zbl0036.03604MR0032833DOI10.2307/1990619
  5. Fülöp, V., Móricz, F., 10.1023/b:amhu.0000034364.78876.af, Acta Math. Hung. 104 (2004), 95-104. (2004) Zbl1067.42006MR2069964DOI10.1023/b:amhu.0000034364.78876.af
  6. Ghodadra, B. L., 10.1007/s10474-010-9202-y, Acta Math. Hung. 128 (2010), 328-343. (2010) Zbl1240.42025MR2670992DOI10.1007/s10474-010-9202-y
  7. Ghodadra, B. L., Order of magnitude of multiple Walsh-Fourier coefficients of functions of bounded p -variation, Int. J. Pure Appl. Math. 82 (2013), 399-408. (2013) Zbl1275.42044MR3100396
  8. Ghodadra, B. L., 10.7153/mia-17-52, Math. Inequal. Appl. 17 (2014), 707-718. (2014) Zbl1290.42022MR3235041DOI10.7153/mia-17-52
  9. Ghodadra, B. L., Fülöp, V., 10.7153/mia-18-61, Math. Inequal. Appl. 18 (2015), 845-858. (2015) Zbl1321.42012MR3344730DOI10.7153/mia-18-61
  10. Ghorpade, S. R., Limaye, B. V., 10.1007/978-1-4419-1621-1, Undergraduate Texts in Mathematics. Springer, London (2010). (2010) Zbl1186.26001MR2583676DOI10.1007/978-1-4419-1621-1
  11. Ghodadra, B. L., Patadia, J. R., A note on the magnitude of Walsh Fourier coefficients, JIPAM, J. Inequal. Pure Appl. Math. 9 (2008), Article No. 44, 7 pages. (2008) Zbl1160.42012MR2417326
  12. Hardy, G. H., On double Fourier series, and especially those which represent the double zeta-function with real and incommensurable parameters, Quart. J. 37 (1905), 53-79 9999JFM99999 36.0501.02. (1905) 
  13. Hewitt, E., Ross, K. A., 10.1007/978-3-662-26755-4, Die Grundlehren der mathematischen Wissenschaften 152. Springer, New York (1970). (1970) Zbl0213.40103MR0262773DOI10.1007/978-3-662-26755-4
  14. Hobson, E. W., The Theory of Functions of a Real Variable and the Theory of Fourier's Series. Vol. I, University Press, Cambridge (1927),9999JFM99999 53.0226.01. (1927) MR0092828
  15. Lebesgue, H., 10.24033/bsmf.859, Bull. Soc. Math. Fr. 38 French (1910), 184-210 9999JFM99999 41.0476.02. (1910) MR1504642DOI10.24033/bsmf.859
  16. Móricz, F., 10.1524/anly.2002.22.4.335, Analysis, München 22 (2002), 335-345. (2002) Zbl1039.42009MR1955735DOI10.1524/anly.2002.22.4.335
  17. Móricz, F., 10.1016/j.jmaa.2014.12.007, J. Math. Anal. Appl. 424 (2015), 1530-1543. (2015) Zbl1321.42020MR3292741DOI10.1016/j.jmaa.2014.12.007
  18. Natanson, I. P., Theory of Functions of Real Variable, Frederick Ungar Publishing, New York (1955). (1955) Zbl0064.29102MR0067952
  19. Paley, R. E. A. C., 10.1112/plms/s2-34.1.241, Proc. Lond. Math. Soc., II. Ser. 34 (1932), 241-264. (1932) Zbl0005.24806MR1576148DOI10.1112/plms/s2-34.1.241
  20. Schipp, F., Wade, W. R., Simon, P., Walsh Series, An Introduction to dyadic Harmonic Analysis. With the Assistance of J. Pál. Adam Hilger, Bristol (1990). (1990) Zbl0727.42017MR1117682
  21. Taibleson, M., 10.2307/2035460, Proc. Am. Math. Soc. 18 (1967), page 766. (1967) Zbl0181.34004MR0212477DOI10.2307/2035460
  22. Zygmund, A., Trigonometric Series. Volumes I and II combined. With a foreword by Robert Fefferman, Cambridge Mathematical Library. Cambridge University Press, Cambridge (2002),9999DOI99999 10.1017/CBO9781316036587 . (2002) Zbl1084.42003MR1963498

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.