On the order of magnitude of Walsh-Fourier transform
Bhikha Lila Ghodadra; Vanda Fülöp
Mathematica Bohemica (2020)
- Volume: 145, Issue: 3, page 265-280
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topGhodadra, Bhikha Lila, and Fülöp, Vanda. "On the order of magnitude of Walsh-Fourier transform." Mathematica Bohemica 145.3 (2020): 265-280. <http://eudml.org/doc/297010>.
@article{Ghodadra2020,
abstract = {For a Lebesgue integrable complex-valued function $f$ defined on $\mathbb \{R\}^+:=[0,\infty )$ let $\hat\{f\}$ be its Walsh-Fourier transform. The Riemann-Lebesgue lemma says that $\hat\{f\}(y)\rightarrow 0$ as $y\rightarrow \infty $. But in general, there is no definite rate at which the Walsh-Fourier transform tends to zero. In fact, the Walsh-Fourier transform of an integrable function can tend to zero as slowly as we wish. Therefore, it is interesting to know for functions of which subclasses of $L^1(\mathbb \{R\}^+)$ there is a definite rate at which the Walsh-Fourier transform tends to zero. We determine this rate for functions of bounded variation on $\mathbb \{R\}^+$. We also determine such rate of Walsh-Fourier transform for functions of bounded variation in the sense of Vitali defined on $(\mathbb \{R\}^+)^N$, $N\in \mathbb \{N\}$.},
author = {Ghodadra, Bhikha Lila, Fülöp, Vanda},
journal = {Mathematica Bohemica},
keywords = {function of bounded variation over $\mathbb \{R\}^+$; function of bounded variation over $(\mathbb \{R\}^+)^2$; function of bounded variation over $(\mathbb \{R\}^+)^N$; order of magnitude; Riemann-Lebesgue lemma; Walsh-Fourier transform},
language = {eng},
number = {3},
pages = {265-280},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the order of magnitude of Walsh-Fourier transform},
url = {http://eudml.org/doc/297010},
volume = {145},
year = {2020},
}
TY - JOUR
AU - Ghodadra, Bhikha Lila
AU - Fülöp, Vanda
TI - On the order of magnitude of Walsh-Fourier transform
JO - Mathematica Bohemica
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 145
IS - 3
SP - 265
EP - 280
AB - For a Lebesgue integrable complex-valued function $f$ defined on $\mathbb {R}^+:=[0,\infty )$ let $\hat{f}$ be its Walsh-Fourier transform. The Riemann-Lebesgue lemma says that $\hat{f}(y)\rightarrow 0$ as $y\rightarrow \infty $. But in general, there is no definite rate at which the Walsh-Fourier transform tends to zero. In fact, the Walsh-Fourier transform of an integrable function can tend to zero as slowly as we wish. Therefore, it is interesting to know for functions of which subclasses of $L^1(\mathbb {R}^+)$ there is a definite rate at which the Walsh-Fourier transform tends to zero. We determine this rate for functions of bounded variation on $\mathbb {R}^+$. We also determine such rate of Walsh-Fourier transform for functions of bounded variation in the sense of Vitali defined on $(\mathbb {R}^+)^N$, $N\in \mathbb {N}$.
LA - eng
KW - function of bounded variation over $\mathbb {R}^+$; function of bounded variation over $(\mathbb {R}^+)^2$; function of bounded variation over $(\mathbb {R}^+)^N$; order of magnitude; Riemann-Lebesgue lemma; Walsh-Fourier transform
UR - http://eudml.org/doc/297010
ER -
References
top- Adams, C. R., Clarkson, J. A., 10.2307/1989819, Trans. Am. Math. Soc. 36 (1934), 711-730 correction ibid. 46 page 468 1939. (1934) Zbl0010.19902MR1501762DOI10.2307/1989819
- Clarkson, J. A., Adams, C. R., 10.2307/1989593, Trans. Am. Math. Soc. 35 (1933), 824-854. (1933) Zbl0008.00602MR1501718DOI10.2307/1989593
- Edwards, R. E., 10.1007/978-1-4612-6208-4, Graduate Texts in Mathematics 64. Springer, New York (1979). (1979) Zbl0424.42001MR0545506DOI10.1007/978-1-4612-6208-4
- Fine, N. J., 10.2307/1990619, Trans. Am. Math. Soc. 65 (1949), 372-414. (1949) Zbl0036.03604MR0032833DOI10.2307/1990619
- Fülöp, V., Móricz, F., 10.1023/b:amhu.0000034364.78876.af, Acta Math. Hung. 104 (2004), 95-104. (2004) Zbl1067.42006MR2069964DOI10.1023/b:amhu.0000034364.78876.af
- Ghodadra, B. L., 10.1007/s10474-010-9202-y, Acta Math. Hung. 128 (2010), 328-343. (2010) Zbl1240.42025MR2670992DOI10.1007/s10474-010-9202-y
- Ghodadra, B. L., Order of magnitude of multiple Walsh-Fourier coefficients of functions of bounded -variation, Int. J. Pure Appl. Math. 82 (2013), 399-408. (2013) Zbl1275.42044MR3100396
- Ghodadra, B. L., 10.7153/mia-17-52, Math. Inequal. Appl. 17 (2014), 707-718. (2014) Zbl1290.42022MR3235041DOI10.7153/mia-17-52
- Ghodadra, B. L., Fülöp, V., 10.7153/mia-18-61, Math. Inequal. Appl. 18 (2015), 845-858. (2015) Zbl1321.42012MR3344730DOI10.7153/mia-18-61
- Ghorpade, S. R., Limaye, B. V., 10.1007/978-1-4419-1621-1, Undergraduate Texts in Mathematics. Springer, London (2010). (2010) Zbl1186.26001MR2583676DOI10.1007/978-1-4419-1621-1
- Ghodadra, B. L., Patadia, J. R., A note on the magnitude of Walsh Fourier coefficients, JIPAM, J. Inequal. Pure Appl. Math. 9 (2008), Article No. 44, 7 pages. (2008) Zbl1160.42012MR2417326
- Hardy, G. H., On double Fourier series, and especially those which represent the double zeta-function with real and incommensurable parameters, Quart. J. 37 (1905), 53-79 9999JFM99999 36.0501.02. (1905)
- Hewitt, E., Ross, K. A., 10.1007/978-3-662-26755-4, Die Grundlehren der mathematischen Wissenschaften 152. Springer, New York (1970). (1970) Zbl0213.40103MR0262773DOI10.1007/978-3-662-26755-4
- Hobson, E. W., The Theory of Functions of a Real Variable and the Theory of Fourier's Series. Vol. I, University Press, Cambridge (1927),9999JFM99999 53.0226.01. (1927) MR0092828
- Lebesgue, H., 10.24033/bsmf.859, Bull. Soc. Math. Fr. 38 French (1910), 184-210 9999JFM99999 41.0476.02. (1910) MR1504642DOI10.24033/bsmf.859
- Móricz, F., 10.1524/anly.2002.22.4.335, Analysis, München 22 (2002), 335-345. (2002) Zbl1039.42009MR1955735DOI10.1524/anly.2002.22.4.335
- Móricz, F., 10.1016/j.jmaa.2014.12.007, J. Math. Anal. Appl. 424 (2015), 1530-1543. (2015) Zbl1321.42020MR3292741DOI10.1016/j.jmaa.2014.12.007
- Natanson, I. P., Theory of Functions of Real Variable, Frederick Ungar Publishing, New York (1955). (1955) Zbl0064.29102MR0067952
- Paley, R. E. A. C., 10.1112/plms/s2-34.1.241, Proc. Lond. Math. Soc., II. Ser. 34 (1932), 241-264. (1932) Zbl0005.24806MR1576148DOI10.1112/plms/s2-34.1.241
- Schipp, F., Wade, W. R., Simon, P., Walsh Series, An Introduction to dyadic Harmonic Analysis. With the Assistance of J. Pál. Adam Hilger, Bristol (1990). (1990) Zbl0727.42017MR1117682
- Taibleson, M., 10.2307/2035460, Proc. Am. Math. Soc. 18 (1967), page 766. (1967) Zbl0181.34004MR0212477DOI10.2307/2035460
- Zygmund, A., Trigonometric Series. Volumes I and II combined. With a foreword by Robert Fefferman, Cambridge Mathematical Library. Cambridge University Press, Cambridge (2002),9999DOI99999 10.1017/CBO9781316036587 . (2002) Zbl1084.42003MR1963498
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.