The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 12 of 12

Showing per page

Order by Relevance | Title | Year of publication

On some classes of operators. IX. Well-bounded operators of order p

Vasile I. Istrătescu — 1976

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Lo spazio A p ( 1 < p < ) di funzioni definite su un intervallo [a,b] tale che per ogni divisione Δ = { a = x 0 < x 1 < < x n = b } sia 0 n = 1 | f ( x i + 1 ) - f ( x i ) | p | x i + 1 - x i | p - 1 = R Δ ( f ) < con la norma || | f | || p p = sup Δ R Δ ( f ) + sup | f ( x ) | p , è uno spazio di Banach. In questo lavoro si studiano gli operatori T in A p aventi la seguente proprietà: esiste un intervallo [a,b] tale che per ogni polinomio p ( λ ) valga l'ineguaglianza p ( τ ) || | p ( λ ) | || p , e si dà una decomposizione spettrale per questi operatori.

On some subspaces for operators of class (N,k)

Vasile I. Istratescu — 1976

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Per gli operatori di classe (N,k) su spazi di Banach, cioè per operatori lineari e limitati su uno spazio di Banach aventi la proprietà che per ogni x X x = 1 risulti T x k T k x , si dimostra che m T = { x X , T n x x } è un sottospazio invariante per tutti gli operatori che commutano con T . Vengono quindi studiate altre proprietà di tali operatori.

On some classes of operators. I

Vasile I. Istrăţescu — 1972

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Si estende un teorema di J. Wermer sugli operatori normali di uno spazio di Hilbert agli operatori di uno spazio di Banach.

Page 1

Download Results (CSV)