Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

M-ideals of homogeneous polynomials

Verónica Dimant — 2011

Studia Mathematica

We study the problem of whether w ( E ) , the space of n-homogeneous polynomials which are weakly continuous on bounded sets, is an M-ideal in the space (ⁿE) of continuous n-homogeneous polynomials. We obtain conditions that ensure this fact and present some examples. We prove that if w ( E ) is an M-ideal in (ⁿE), then w ( E ) coincides with w 0 ( E ) (n-homogeneous polynomials that are weakly continuous on bounded sets at 0). We introduce a polynomial version of property (M) and derive that if w ( E ) = w 0 ( E ) and (E) is an M-ideal in...

Biduals of tensor products in operator spaces

Verónica DimantMaite Fernández-Unzueta — 2015

Studia Mathematica

We study whether the operator space V * * α W * * can be identified with a subspace of the bidual space ( V α W ) * * , for a given operator space tensor norm. We prove that this can be done if α is finitely generated and V and W are locally reflexive. If in addition the dual spaces are locally reflexive and the bidual spaces have the completely bounded approximation property, then the identification is through a complete isomorphism. When α is the projective, Haagerup or injective norm, the hypotheses can be weakened.

Integral holomorphic functions

Verónica DimantPablo GalindoManuel MaestreIgnacio Zalduendo — 2004

Studia Mathematica

We define the class of integral holomorphic functions over Banach spaces; these are functions admitting an integral representation akin to the Cauchy integral formula, and are related to integral polynomials. After studying various properties of these functions, Banach and Fréchet spaces of integral holomorphic functions are defined, and several aspects investigated: duality, Taylor series approximation, biduality and reflexivity.

Page 1

Download Results (CSV)