We study the problem of existence of surfaces in R3 parametrized on the sphere S2 with prescribed mean curvature H in the perturbative case, i.e. for H = Ho + EH1, where Ho is a nonzero constant, H1 is a C2 function and E is a small perturbation parameter.
Using a perturbation argument based on a finite dimensional reduction, we find positive solutions to a given class of perturbed degenerate elliptic equations with critical growth.
The paper deals with the study of a quasilinear elliptic equation involving the p-laplacian with a Hardy-type singular potential and a critical nonlinearity. Existence and nonexistence results are first proved for the equation with a concave singular term. Then we study the critical case related to Hardy inequality, providing a description of the behavior of radial solutions of the limiting problem and obtaining existence and multiplicity results for perturbed problems through variational and topological...
In this preliminary Note we outline the results of the forthcoming paper [2] dealing with a class on nonlinear Schrödinger equations with potentials vanishing at infinity. Working in weighted Sobolev spaces, the existence of a ground state is proved. Furthermore, the behaviour of such a solution, as the Planck constant tends to zero (semiclassical limit), is studied proving that it concentrates at a point.
Asymptotics of solutions to Schrödinger equations with singular magnetic and electric potentials is investigated. By using a Almgren type monotonicity formula, separation of variables, and an iterative Brezis–Kato type procedure, we describe the exact behavior near the singularity of solutions to linear and semilinear (critical and subcritical) elliptic equations with an inverse square electric potential and a singular magnetic potential with a homogeneity of order −1.
We deal with a class on nonlinear Schrödinger equations (NLS) with potentials , , and , . Working in weighted Sobolev spaces, the existence of ground states belonging to is proved under the assumption that for some . Furthermore, it is shown that are spikes concentrating
at a minimum point of , where .
Download Results (CSV)