The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be the scattering matrix related to the wave equation in the exterior of a non-trapping obstacle , with Dirichlet or Neumann boundary conditions on . The function , called scattering phase, is determined from the equality . We show that has an asymptotic expansion as and we compute the first three coefficients. Our result proves the conjecture of Majda and Ralston for non-trapping obstacles.
Download Results (CSV)