Asymptotic behaviour of the scattering phase for non-trapping obstacles

Veselin Petkov; Georgi Popov

Annales de l'institut Fourier (1982)

  • Volume: 32, Issue: 3, page 111-149
  • ISSN: 0373-0956

Abstract

top
Let S ( λ ) be the scattering matrix related to the wave equation in the exterior of a non-trapping obstacle 𝒪 R n , n 3 with Dirichlet or Neumann boundary conditions on 𝒪 . The function s ( λ ) , called scattering phase, is determined from the equality e - 2 π i s ( λ ) = det S ( λ ) . We show that s ( λ ) has an asymptotic expansion s ( λ ) j = 0 c j λ n - j as λ + and we compute the first three coefficients. Our result proves the conjecture of Majda and Ralston for non-trapping obstacles.

How to cite

top

Petkov, Veselin, and Popov, Georgi. "Asymptotic behaviour of the scattering phase for non-trapping obstacles." Annales de l'institut Fourier 32.3 (1982): 111-149. <http://eudml.org/doc/74543>.

@article{Petkov1982,
abstract = {Let $S(\lambda )$ be the scattering matrix related to the wave equation in the exterior of a non-trapping obstacle $\{\cal O\} \subset \{\bf R\}^n$, $n\ge 3$ with Dirichlet or Neumann boundary conditions on $\partial \{\cal O\}$. The function $s(\lambda )$, called scattering phase, is determined from the equality $e^\{-2\pi is(\lambda )\} = \{\rm det\} S(\lambda )$. We show that $s(\lambda )$ has an asymptotic expansion $s(\lambda ) \sim \sum ^\infty _\{j=0\} c_j \lambda ^\{n-j\}$ as $\lambda \rightarrow +\infty $ and we compute the first three coefficients. Our result proves the conjecture of Majda and Ralston for non-trapping obstacles.},
author = {Petkov, Veselin, Popov, Georgi},
journal = {Annales de l'institut Fourier},
keywords = {asymptotics; scattering phase; wave equation in the exterior of a non- trapping obstacle; Dirichlet problem; non-homogeneous Neumann problem; Fourier transform},
language = {eng},
number = {3},
pages = {111-149},
publisher = {Association des Annales de l'Institut Fourier},
title = {Asymptotic behaviour of the scattering phase for non-trapping obstacles},
url = {http://eudml.org/doc/74543},
volume = {32},
year = {1982},
}

TY - JOUR
AU - Petkov, Veselin
AU - Popov, Georgi
TI - Asymptotic behaviour of the scattering phase for non-trapping obstacles
JO - Annales de l'institut Fourier
PY - 1982
PB - Association des Annales de l'Institut Fourier
VL - 32
IS - 3
SP - 111
EP - 149
AB - Let $S(\lambda )$ be the scattering matrix related to the wave equation in the exterior of a non-trapping obstacle ${\cal O} \subset {\bf R}^n$, $n\ge 3$ with Dirichlet or Neumann boundary conditions on $\partial {\cal O}$. The function $s(\lambda )$, called scattering phase, is determined from the equality $e^{-2\pi is(\lambda )} = {\rm det} S(\lambda )$. We show that $s(\lambda )$ has an asymptotic expansion $s(\lambda ) \sim \sum ^\infty _{j=0} c_j \lambda ^{n-j}$ as $\lambda \rightarrow +\infty $ and we compute the first three coefficients. Our result proves the conjecture of Majda and Ralston for non-trapping obstacles.
LA - eng
KW - asymptotics; scattering phase; wave equation in the exterior of a non- trapping obstacle; Dirichlet problem; non-homogeneous Neumann problem; Fourier transform
UR - http://eudml.org/doc/74543
ER -

References

top
  1. [1] K. ANDERSSON and R. MELROSE, The propagation of singularities along gliding rays, Invent, Math., 41 (1977), 197-232. Zbl0373.35053MR58 #13221
  2. [2] C. BARDOS, J.C. GUILLOT et J. RALSTON, La relation de Poisson pour l'équation des ondes dans un ouvert non-borné. Application à la théorie de la diffusion, preprint. Zbl0445.35071
  3. [3] C. BARDOS, J.C. GUILLOT et J. RALSTON, Relation de Poisson pour l'équation des ondes dans un ouvert non-borné, Séminaire Goulaouic-Schwartz, 1979-1980, exposé n° 13. Zbl0445.35071
  4. [4] M.S. BIRMAN, Perturbation of the spectrum of a singular elliptic operator under the variation of boundaries and boundary conditions, Dokl. Akad. Nauk SSSR, 137 (1961), 761-763 (in Russian); Soviet Math. Dokl., 2 (1961), 326-328. Zbl0146.34403
  5. [5] M.S. BIRMAN, Perturbation of the continuous spectrum of a singular elliptic operator for changing boundary and boundary conditions, Vestnik Leningrad Univ., 1 (1962), 22-55 (in Russian). 
  6. [6] M. S. BIRMAN and M.G. KREIN, On the theory of wave operators and scattering operators, Dokl. Akad. Nauk SSSR, 144 (1962), 475-478 (in Russian). Zbl0196.45004MR25 #2447
  7. [7] V.S. BUSLAEV, Scattering plane waves, spectral asymptotics and trace formulas in exterior problems, Dokl. Akad. Nauk SSSR, 197 (1971), 999-1002 (in Russian). Zbl0224.47023MR43 #3840
  8. [8] Y. COLIN DE VERDIERE, Une formule de trace pour l'opérateur de Schrödinger dans R3, Ann. Scient. Ec. Norm. Sup., 14 (1981), 27-39. Zbl0482.35068MR82g:35088
  9. [9] R. COURANT, Uber die Eigenwerte bei den Differentialgleichungen der mathematishen Physik, Math. Z., 7 (1920), 1-57. Zbl47.0455.02JFM47.0455.02
  10. [10] P. DEIFT, Classical scattering theory with a trace condition, Dissertation, Princeton University, 1976. 
  11. [11] I. GOHBERG and M.G. KREIN, Introduction to the Theory of Linear Non-selfadjoint Operators, AMS Translations, vol 18, Providence 1969. Zbl0181.13504MR39 #7447
  12. [12] L. GUILLOPE, Une formule de trace pour l'opérateur de Schrödinger dans Rn, thèse, Université Scient. et Medicale Grenoble, 1981. 
  13. [13] V. Ia. IVRII, On the second term of the spectral asymptotics for the Laplace-Beltrami operator on manifold with boundary, Functional Anal. i Pril., 14, n° 2 (1980), 25-34 (in Russian). Zbl0448.58024MR82m:58057
  14. [14] V.Ia. IVRII, Sharp spectral asymptotics for the Laplace-Beltrami operator under general ellipic boundary conditions, Functional Anal i Pril., 15, n° 1 (1981), 74-75 (in Russian). Zbl0455.35093
  15. [15] A. JENSEN and T. KATO, Asymptotic behavior of the scattering phase for exterior domains, Comm. in P.D.E., 3 (1978), 1165-1195. Zbl0419.35067MR80g:35098
  16. [16] T. KATO, Monotonicy theorems in scattering theory, Hadronic Journal, 1 (1978), 134-154. Zbl0426.47004MR80g:47009
  17. [17] M.G. KREIN, On the trace formula in the theory of perturbation, Mat. Sb., 33 (75) (1953), 597-626 (in Russian). 
  18. [18] M.G. KREIN, On perturbation determinants and a trace formula for unitary and selfadjoint operators, Dokl. Akad. Nauk SSSR, 144 (1962), 268-271. Zbl0191.15201MR25 #2446
  19. [19] P. LAX and R. PHILLIPS, Scattering theory, Academic Press, 1967. Zbl0186.16301
  20. [20] P. LAX and R. PHILLIPS, Scattering theory for the wave equation in even space dimensions, Indiana Univ. Math. J., 22 (1972), 101-134. Zbl0236.35036MR46 #4014
  21. [21] P. LAX and R. PHILLIPS, The time delay operator and a related trace formula, Topics in Functional Analysis, edited by Gohberg and M. Kac, Academic Press, 1978, p. 197-215. Zbl0463.47006MR80j:47010
  22. [22] A. MAJDA, A representation formula for the scattering operator and the inverse problem for arbitrary bodies, Comm. Pure Appl. Math., 30 (1977), 165-194. Zbl0335.35076MR55 #8583
  23. [23] A. MAJDA and M. TAYLOR, Inverse scattering problems for transparant obstacles, electromagnetic waves and hyperbolic systems, Comm. in P.D.E., 2 (1977), 395-433. Zbl0373.35055MR55 #10867
  24. [24] A. MAJDA and J. RALSTON, An analogue of Weyl's theorem for unbounded domains, I, II, III, Duke Math. J., 45 (1978), 183-196, 513-536 & 46, (1979), 725-731. Zbl0416.35058
  25. [25] H.P. Mc KEAN and I.M. SINGER, Curvature and the eigenvalues of the Laplacian, J. Diff. Geometry, 1, (1967), 43-69. Zbl0198.44301MR36 #828
  26. [26] R. MELROSE and J. SJÖSTRAND, Singularities of boundary value problems I, Comm. Pure Appl. Math., 31, (1978), 593-617. Zbl0368.35020MR58 #11859
  27. [27] R. MELROSE and J. SJÖSTRAND, Singularities of boundary value problems II, Comm. Pure Appl. Math., 35 (1982), 129-168. Zbl0546.35083MR83h:35120
  28. [28] R. MELROSE et J. SJÖSTRAND, Propagation de singularités pour des problèmes aux limites d'ordre 2, Séminaire Goulaouic-Schwartz, 1977-1978, exposé 15. Zbl0383.35043
  29. [29] R. MELROSE, Singularities and energy decay in acoustical scattering, Duke Math. J., 46 (1979), 43-59. Zbl0415.35050MR80h:35104
  30. [30] R. MELROSE, Forward scattering by a convex obstacle, Comm. Pure Appl. Math., 33 (1980), 461-499. Zbl0435.35066MR81k:35126
  31. [31] V. PETKOV et G. POPOV, Asymptotique de la phase de diffusion pour des domaines non-convexes, C.R. Acad. Sc., Paris, 292 (1981), 275-277. Zbl0465.35071MR82b:35123
  32. [32] V. PETKOV, Comportement asymptotique de la phase de diffusion pour des obstacles non-convexes, Séminaire Goulaouic-Meyer-Schwartz, 1980-1981, Exposé 13. Zbl0497.35070
  33. [33] PHAM THE LAI, Meilleures estimations asymptotiques des restes de la fonction spectrale et des valeurs propres relatifs au laplacien, Math. Scand., 48 (1981), 5-38. Zbl0466.35060MR83b:35127a
  34. [34] J. RALSTON, Diffraction by convex bodies, Séminaire Goulaouic-Schwartz, 1978-1979, Exposé 23. Zbl0405.35028
  35. [35] J. RALSTON, Propagation of singularities and the scattering matrix, In Singularities in boundary value problems, edited by H.G. Garnir, D. Reidel Publ. Company, 1981, p. 169-184. Zbl0471.35068MR82j:35121
  36. [36] J. RALSTON, Note on the decay of acoustic waves, Duke Math. J., 46 (1979), 799-804. Zbl0427.35043MR80m:35051
  37. [37] M. REED and B. SIMON, Scattering theory, Academic Press, 1979. Zbl0405.47007
  38. [38] M. REED and B. SIMON, Analysis of operators, Academic Press, 1978. Zbl0401.47001
  39. [39] R. SEELEY, A sharp asymptotic remainder estimate for the eigen-values of the laplacian in a domain in R3, Adv. in Math., 29 (1978), 244-269. Zbl0382.35043MR80a:35096
  40. [40] B. VAINBERG, On the short wave asymptotic behavior as t → ∞ of solutions of nonstationary problems, Uspehi Mat. Nauk, 30, n° 2 (1975), 1-55 (in Russian) ; Russian Math. Surveys, 30 (1975), 1-58. Zbl0318.35006
  41. [41] H. WEYL, Uber die Asymptotische Verteilung der Eigenwerte, Göttinger Nachr., (1911), 110-117. Zbl42.0432.03JFM43.0435.04

Citations in EuDML Documents

top
  1. V. M. Petkov, La distribution des pôles de la matrice de diffusion
  2. D. Robert, Approximation semi-classique de la phase de diffusion pour un potentiel (d'après un travail de D. Robert et H. Tamura)
  3. D. Robert, Asymptotique de la phase de diffusion à haute énergie pour des perturbations du laplacien
  4. Gilles Carron, Déterminant relatif et la fonction Xi
  5. Xue Ping Wang, Time-delay operators in semiclassical limit, finite range potentials
  6. D. Robert, Asymptotique de la phase de diffusion à haute énergie pour des perturbations du second ordre du laplacien

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.