Asymptotic behaviour of the scattering phase for non-trapping obstacles
Annales de l'institut Fourier (1982)
- Volume: 32, Issue: 3, page 111-149
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topPetkov, Veselin, and Popov, Georgi. "Asymptotic behaviour of the scattering phase for non-trapping obstacles." Annales de l'institut Fourier 32.3 (1982): 111-149. <http://eudml.org/doc/74543>.
@article{Petkov1982,
abstract = {Let $S(\lambda )$ be the scattering matrix related to the wave equation in the exterior of a non-trapping obstacle $\{\cal O\} \subset \{\bf R\}^n$, $n\ge 3$ with Dirichlet or Neumann boundary conditions on $\partial \{\cal O\}$. The function $s(\lambda )$, called scattering phase, is determined from the equality $e^\{-2\pi is(\lambda )\} = \{\rm det\} S(\lambda )$. We show that $s(\lambda )$ has an asymptotic expansion $s(\lambda ) \sim \sum ^\infty _\{j=0\} c_j \lambda ^\{n-j\}$ as $\lambda \rightarrow +\infty $ and we compute the first three coefficients. Our result proves the conjecture of Majda and Ralston for non-trapping obstacles.},
author = {Petkov, Veselin, Popov, Georgi},
journal = {Annales de l'institut Fourier},
keywords = {asymptotics; scattering phase; wave equation in the exterior of a non- trapping obstacle; Dirichlet problem; non-homogeneous Neumann problem; Fourier transform},
language = {eng},
number = {3},
pages = {111-149},
publisher = {Association des Annales de l'Institut Fourier},
title = {Asymptotic behaviour of the scattering phase for non-trapping obstacles},
url = {http://eudml.org/doc/74543},
volume = {32},
year = {1982},
}
TY - JOUR
AU - Petkov, Veselin
AU - Popov, Georgi
TI - Asymptotic behaviour of the scattering phase for non-trapping obstacles
JO - Annales de l'institut Fourier
PY - 1982
PB - Association des Annales de l'Institut Fourier
VL - 32
IS - 3
SP - 111
EP - 149
AB - Let $S(\lambda )$ be the scattering matrix related to the wave equation in the exterior of a non-trapping obstacle ${\cal O} \subset {\bf R}^n$, $n\ge 3$ with Dirichlet or Neumann boundary conditions on $\partial {\cal O}$. The function $s(\lambda )$, called scattering phase, is determined from the equality $e^{-2\pi is(\lambda )} = {\rm det} S(\lambda )$. We show that $s(\lambda )$ has an asymptotic expansion $s(\lambda ) \sim \sum ^\infty _{j=0} c_j \lambda ^{n-j}$ as $\lambda \rightarrow +\infty $ and we compute the first three coefficients. Our result proves the conjecture of Majda and Ralston for non-trapping obstacles.
LA - eng
KW - asymptotics; scattering phase; wave equation in the exterior of a non- trapping obstacle; Dirichlet problem; non-homogeneous Neumann problem; Fourier transform
UR - http://eudml.org/doc/74543
ER -
References
top- [1] K. ANDERSSON and R. MELROSE, The propagation of singularities along gliding rays, Invent, Math., 41 (1977), 197-232. Zbl0373.35053MR58 #13221
- [2] C. BARDOS, J.C. GUILLOT et J. RALSTON, La relation de Poisson pour l'équation des ondes dans un ouvert non-borné. Application à la théorie de la diffusion, preprint. Zbl0445.35071
- [3] C. BARDOS, J.C. GUILLOT et J. RALSTON, Relation de Poisson pour l'équation des ondes dans un ouvert non-borné, Séminaire Goulaouic-Schwartz, 1979-1980, exposé n° 13. Zbl0445.35071
- [4] M.S. BIRMAN, Perturbation of the spectrum of a singular elliptic operator under the variation of boundaries and boundary conditions, Dokl. Akad. Nauk SSSR, 137 (1961), 761-763 (in Russian); Soviet Math. Dokl., 2 (1961), 326-328. Zbl0146.34403
- [5] M.S. BIRMAN, Perturbation of the continuous spectrum of a singular elliptic operator for changing boundary and boundary conditions, Vestnik Leningrad Univ., 1 (1962), 22-55 (in Russian).
- [6] M. S. BIRMAN and M.G. KREIN, On the theory of wave operators and scattering operators, Dokl. Akad. Nauk SSSR, 144 (1962), 475-478 (in Russian). Zbl0196.45004MR25 #2447
- [7] V.S. BUSLAEV, Scattering plane waves, spectral asymptotics and trace formulas in exterior problems, Dokl. Akad. Nauk SSSR, 197 (1971), 999-1002 (in Russian). Zbl0224.47023MR43 #3840
- [8] Y. COLIN DE VERDIERE, Une formule de trace pour l'opérateur de Schrödinger dans R3, Ann. Scient. Ec. Norm. Sup., 14 (1981), 27-39. Zbl0482.35068MR82g:35088
- [9] R. COURANT, Uber die Eigenwerte bei den Differentialgleichungen der mathematishen Physik, Math. Z., 7 (1920), 1-57. Zbl47.0455.02JFM47.0455.02
- [10] P. DEIFT, Classical scattering theory with a trace condition, Dissertation, Princeton University, 1976.
- [11] I. GOHBERG and M.G. KREIN, Introduction to the Theory of Linear Non-selfadjoint Operators, AMS Translations, vol 18, Providence 1969. Zbl0181.13504MR39 #7447
- [12] L. GUILLOPE, Une formule de trace pour l'opérateur de Schrödinger dans Rn, thèse, Université Scient. et Medicale Grenoble, 1981.
- [13] V. Ia. IVRII, On the second term of the spectral asymptotics for the Laplace-Beltrami operator on manifold with boundary, Functional Anal. i Pril., 14, n° 2 (1980), 25-34 (in Russian). Zbl0448.58024MR82m:58057
- [14] V.Ia. IVRII, Sharp spectral asymptotics for the Laplace-Beltrami operator under general ellipic boundary conditions, Functional Anal i Pril., 15, n° 1 (1981), 74-75 (in Russian). Zbl0455.35093
- [15] A. JENSEN and T. KATO, Asymptotic behavior of the scattering phase for exterior domains, Comm. in P.D.E., 3 (1978), 1165-1195. Zbl0419.35067MR80g:35098
- [16] T. KATO, Monotonicy theorems in scattering theory, Hadronic Journal, 1 (1978), 134-154. Zbl0426.47004MR80g:47009
- [17] M.G. KREIN, On the trace formula in the theory of perturbation, Mat. Sb., 33 (75) (1953), 597-626 (in Russian).
- [18] M.G. KREIN, On perturbation determinants and a trace formula for unitary and selfadjoint operators, Dokl. Akad. Nauk SSSR, 144 (1962), 268-271. Zbl0191.15201MR25 #2446
- [19] P. LAX and R. PHILLIPS, Scattering theory, Academic Press, 1967. Zbl0186.16301
- [20] P. LAX and R. PHILLIPS, Scattering theory for the wave equation in even space dimensions, Indiana Univ. Math. J., 22 (1972), 101-134. Zbl0236.35036MR46 #4014
- [21] P. LAX and R. PHILLIPS, The time delay operator and a related trace formula, Topics in Functional Analysis, edited by Gohberg and M. Kac, Academic Press, 1978, p. 197-215. Zbl0463.47006MR80j:47010
- [22] A. MAJDA, A representation formula for the scattering operator and the inverse problem for arbitrary bodies, Comm. Pure Appl. Math., 30 (1977), 165-194. Zbl0335.35076MR55 #8583
- [23] A. MAJDA and M. TAYLOR, Inverse scattering problems for transparant obstacles, electromagnetic waves and hyperbolic systems, Comm. in P.D.E., 2 (1977), 395-433. Zbl0373.35055MR55 #10867
- [24] A. MAJDA and J. RALSTON, An analogue of Weyl's theorem for unbounded domains, I, II, III, Duke Math. J., 45 (1978), 183-196, 513-536 & 46, (1979), 725-731. Zbl0416.35058
- [25] H.P. Mc KEAN and I.M. SINGER, Curvature and the eigenvalues of the Laplacian, J. Diff. Geometry, 1, (1967), 43-69. Zbl0198.44301MR36 #828
- [26] R. MELROSE and J. SJÖSTRAND, Singularities of boundary value problems I, Comm. Pure Appl. Math., 31, (1978), 593-617. Zbl0368.35020MR58 #11859
- [27] R. MELROSE and J. SJÖSTRAND, Singularities of boundary value problems II, Comm. Pure Appl. Math., 35 (1982), 129-168. Zbl0546.35083MR83h:35120
- [28] R. MELROSE et J. SJÖSTRAND, Propagation de singularités pour des problèmes aux limites d'ordre 2, Séminaire Goulaouic-Schwartz, 1977-1978, exposé 15. Zbl0383.35043
- [29] R. MELROSE, Singularities and energy decay in acoustical scattering, Duke Math. J., 46 (1979), 43-59. Zbl0415.35050MR80h:35104
- [30] R. MELROSE, Forward scattering by a convex obstacle, Comm. Pure Appl. Math., 33 (1980), 461-499. Zbl0435.35066MR81k:35126
- [31] V. PETKOV et G. POPOV, Asymptotique de la phase de diffusion pour des domaines non-convexes, C.R. Acad. Sc., Paris, 292 (1981), 275-277. Zbl0465.35071MR82b:35123
- [32] V. PETKOV, Comportement asymptotique de la phase de diffusion pour des obstacles non-convexes, Séminaire Goulaouic-Meyer-Schwartz, 1980-1981, Exposé 13. Zbl0497.35070
- [33] PHAM THE LAI, Meilleures estimations asymptotiques des restes de la fonction spectrale et des valeurs propres relatifs au laplacien, Math. Scand., 48 (1981), 5-38. Zbl0466.35060MR83b:35127a
- [34] J. RALSTON, Diffraction by convex bodies, Séminaire Goulaouic-Schwartz, 1978-1979, Exposé 23. Zbl0405.35028
- [35] J. RALSTON, Propagation of singularities and the scattering matrix, In Singularities in boundary value problems, edited by H.G. Garnir, D. Reidel Publ. Company, 1981, p. 169-184. Zbl0471.35068MR82j:35121
- [36] J. RALSTON, Note on the decay of acoustic waves, Duke Math. J., 46 (1979), 799-804. Zbl0427.35043MR80m:35051
- [37] M. REED and B. SIMON, Scattering theory, Academic Press, 1979. Zbl0405.47007
- [38] M. REED and B. SIMON, Analysis of operators, Academic Press, 1978. Zbl0401.47001
- [39] R. SEELEY, A sharp asymptotic remainder estimate for the eigen-values of the laplacian in a domain in R3, Adv. in Math., 29 (1978), 244-269. Zbl0382.35043MR80a:35096
- [40] B. VAINBERG, On the short wave asymptotic behavior as t → ∞ of solutions of nonstationary problems, Uspehi Mat. Nauk, 30, n° 2 (1975), 1-55 (in Russian) ; Russian Math. Surveys, 30 (1975), 1-58. Zbl0318.35006
- [41] H. WEYL, Uber die Asymptotische Verteilung der Eigenwerte, Göttinger Nachr., (1911), 110-117. Zbl42.0432.03JFM43.0435.04
Citations in EuDML Documents
top- V. M. Petkov, La distribution des pôles de la matrice de diffusion
- D. Robert, Approximation semi-classique de la phase de diffusion pour un potentiel (d'après un travail de D. Robert et H. Tamura)
- D. Robert, Asymptotique de la phase de diffusion à haute énergie pour des perturbations du laplacien
- Gilles Carron, Déterminant relatif et la fonction Xi
- Xue Ping Wang, Time-delay operators in semiclassical limit, finite range potentials
- D. Robert, Asymptotique de la phase de diffusion à haute énergie pour des perturbations du second ordre du laplacien
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.