Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Modelización de datos longitudinales con estructuras de covarianza no estacionarias: modelos de coeficientes aleatorios frente a modelos alternativos.

Vicente Núñez-AntónDale L. Zimmerman — 2001

Qüestiió

Un tema que ha suscitado el interés de los investigadores en datos longitudinales durante las dos últimas décadas, ha sido el desarrollo y uso de modelos paramétricos explícitos para la estructura de covarianza de los datos. Sin embargo, el análisis de estructuras de covarianza no estacionarias en el contexto de datos longitudinales no se ha realizado de forma detallada principalmente debido a que las distintas aplicaciones no hacían necesario su uso. Muchos son los modelos propuestos recientemente,...

Bayesian joint modelling of the mean and covariance structures for normal longitudinal data.

We consider the joint modelling of the mean and covariance structures for the general antedependence model, estimating their parameters and the innovation variances in a longitudinal data context. We propose a new and computationally efficient classic estimation method based on the Fisher scoring algorithm to obtain the maximum likelihood estimates of the parameters. In addition, we also propose a new and innovative Bayesian methodology based on the Gibbs sampling, properly adapted for longitudinal...

Bias correction on censored least squares regression models

Jesus OrbeVicente Núñez-Antón — 2012

Kybernetika

This paper proposes a bias reduction of the coefficients' estimator for linear regression models when observations are randomly censored and the error distribution is unknown. The proposed bias correction is applied to the weighted least squares estimator proposed by Stute [28] [W. Stute: Consistent estimation under random censorship when covariables are present. J. Multivariate Anal. 45 (1993), 89-103.], and it is based on model-based bootstrap resampling techniques that also allow us to work with...

Page 1

Download Results (CSV)