Bias correction on censored least squares regression models

Jesus Orbe; Vicente Núñez-Antón

Kybernetika (2012)

  • Volume: 48, Issue: 5, page 1045-1063
  • ISSN: 0023-5954

Abstract

top
This paper proposes a bias reduction of the coefficients' estimator for linear regression models when observations are randomly censored and the error distribution is unknown. The proposed bias correction is applied to the weighted least squares estimator proposed by Stute [28] [W. Stute: Consistent estimation under random censorship when covariables are present. J. Multivariate Anal. 45 (1993), 89-103.], and it is based on model-based bootstrap resampling techniques that also allow us to work with censored data. Our bias-corrected estimator proposal is evaluated and its behavior assessed in simulation studies concluding that both the bias and the mean square error are reduced with the new proposal.

How to cite

top

Orbe, Jesus, and Núñez-Antón, Vicente. "Bias correction on censored least squares regression models." Kybernetika 48.5 (2012): 1045-1063. <http://eudml.org/doc/251404>.

@article{Orbe2012,
abstract = {This paper proposes a bias reduction of the coefficients' estimator for linear regression models when observations are randomly censored and the error distribution is unknown. The proposed bias correction is applied to the weighted least squares estimator proposed by Stute [28] [W. Stute: Consistent estimation under random censorship when covariables are present. J. Multivariate Anal. 45 (1993), 89-103.], and it is based on model-based bootstrap resampling techniques that also allow us to work with censored data. Our bias-corrected estimator proposal is evaluated and its behavior assessed in simulation studies concluding that both the bias and the mean square error are reduced with the new proposal.},
author = {Orbe, Jesus, Núñez-Antón, Vicente},
journal = {Kybernetika},
keywords = {bias; censoring; least squares; linear regression; Kaplan–Meier estimator; bias; censoring; least squares; linear regression; Kaplan-Meier estimator},
language = {eng},
number = {5},
pages = {1045-1063},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Bias correction on censored least squares regression models},
url = {http://eudml.org/doc/251404},
volume = {48},
year = {2012},
}

TY - JOUR
AU - Orbe, Jesus
AU - Núñez-Antón, Vicente
TI - Bias correction on censored least squares regression models
JO - Kybernetika
PY - 2012
PB - Institute of Information Theory and Automation AS CR
VL - 48
IS - 5
SP - 1045
EP - 1063
AB - This paper proposes a bias reduction of the coefficients' estimator for linear regression models when observations are randomly censored and the error distribution is unknown. The proposed bias correction is applied to the weighted least squares estimator proposed by Stute [28] [W. Stute: Consistent estimation under random censorship when covariables are present. J. Multivariate Anal. 45 (1993), 89-103.], and it is based on model-based bootstrap resampling techniques that also allow us to work with censored data. Our bias-corrected estimator proposal is evaluated and its behavior assessed in simulation studies concluding that both the bias and the mean square error are reduced with the new proposal.
LA - eng
KW - bias; censoring; least squares; linear regression; Kaplan–Meier estimator; bias; censoring; least squares; linear regression; Kaplan-Meier estimator
UR - http://eudml.org/doc/251404
ER -

References

top
  1. Akritas, M. G., Bootstrapping the Kaplan-Meier estimator., J. Amer. Statist. Assoc. 81 (1986), 1032-1038. Zbl0635.62032MR0867628
  2. Altman, D. G., Stavola, B. L. De, Love, S. B., Stepniewska, K. A., 10.1038/bjc.1995.364, British J. Cancer. 72 (1985), 511-518. DOI10.1038/bjc.1995.364
  3. Buckley, J. J., James, I. R., 10.1093/biomet/66.3.429, Biometrika 66 (1979), 429-436. Zbl0425.62051DOI10.1093/biomet/66.3.429
  4. Chatterjee, S., McLeish, D. L., 10.1080/03610928608829305, Comm. Statist. Theory Methods 15 (1986), 3227-3243. Zbl0616.62093MR0860480DOI10.1080/03610928608829305
  5. Chen, Y. Y., Hollander, M., Langberg, N. A., 10.1080/01621459.1982.10477777, J. Amer. Statist. Assoc. 77 (1982), 141-144. Zbl0504.62033MR0648036DOI10.1080/01621459.1982.10477777
  6. Cox, D. R., Regression models and life-tables., J. R. Stat. Soc. Ser. B. 34 (1972), 187-220. Zbl0243.62041MR0341758
  7. Cox, D. R., 10.1093/biomet/62.2.269, Biometrika 62 (1975), 269-276. Zbl0312.62002MR0400509DOI10.1093/biomet/62.2.269
  8. Davison, A. C., Hinkley, D. V., Bootstrap Methods and Their Application., Cambridge University Press, Cambridge 1997. Zbl0886.62001MR1478673
  9. Efron, B., The two sample problem with censored data., In: Proc. 5th Berkeley Symposium 4 (1967), pp. 831-853. 
  10. Efron, B., 10.1080/01621459.1981.10477650, J. Amer. Statist. Assoc. 76 (1981), 312-319. Zbl0461.62039MR0624333DOI10.1080/01621459.1981.10477650
  11. Efron, B., Tibshirani, R. J., An Introduction to the Bootstrap., Chapman and Hall, New York 1993. Zbl0835.62038MR1270903
  12. Gill, R. D., Censoring and Stochastics Integrals., Math. Centre Tracts 124, Math. Centrum, Amsterdam 1980. MR0596815
  13. Heller, G., Simonoff, J. S., 10.1093/biomet/77.3.515, Biometrika 77 (1990), 515-520. MR1087841DOI10.1093/biomet/77.3.515
  14. Jin, Z., Lin, D., Wei, L. J., Ying, Z., 10.1093/biomet/90.2.341, Biometrika 90 (2003), 341-353. Zbl1034.62103MR1986651DOI10.1093/biomet/90.2.341
  15. Kaplan, E. L., Meier, P., 10.1080/01621459.1958.10501452, J. Amer. Statist. Assoc. 53 (1958), 457-481. Zbl0089.14801MR0093867DOI10.1080/01621459.1958.10501452
  16. Koul, H., Susarla, V., Van-Ryzin, J., 10.1214/aos/1176345644, Ann. Statist. 9 (1981), 1279-1288. Zbl0477.62046MR0630110DOI10.1214/aos/1176345644
  17. Lai, T. L., Ying, Z., 10.1016/0047-259X(92)90088-W, J. Multivariate Anal. 40 (1992), 13-45. Zbl0799.62071MR1149249DOI10.1016/0047-259X(92)90088-W
  18. Leurgans, S., 10.2307/2336144, Biometrika 74 (1987), 301-309. Zbl0649.62068MR0903130DOI10.2307/2336144
  19. Mauro, D., 10.1214/aos/1176346582, Ann. Statist. 13 (1985), 142-149. Zbl0575.62043MR0773158DOI10.1214/aos/1176346582
  20. Miller, R. G., 10.1093/biomet/63.3.449, Biometrika 63 (1976), 449-464. Zbl0344.62058MR0458737DOI10.1093/biomet/63.3.449
  21. Miller, R. G., Halpern, J., 10.1093/biomet/69.3.521, Biometrika 69 (1982), 521-531. Zbl0503.62091MR0695199DOI10.1093/biomet/69.3.521
  22. Orbe, J., Ferreira, E., Núñez-Antón, V., 10.1093/biostatistics/4.1.109, Biostatistics 4 (2003), 109-121. Zbl1139.62307DOI10.1093/biostatistics/4.1.109
  23. Reid, N., 10.1093/biomet/68.3.601, Biometrika 68 (1981), 601-608. Zbl0479.62029MR0637777DOI10.1093/biomet/68.3.601
  24. Reid, N., 10.1214/ss/1177010394, Statist. Sci. 9 (1994), 439-455. Zbl0955.01543MR1325436DOI10.1214/ss/1177010394
  25. Ritov, Y., 10.1214/aos/1176347502, Ann. Statist. 18 (1990), 303-328. Zbl0713.62045MR1041395DOI10.1214/aos/1176347502
  26. Schmee, J., Hahn, G. J., 10.1080/00401706.1979.10489811, Technometrics 21 (1979), 417-434. DOI10.1080/00401706.1979.10489811
  27. Stare, J., Heinzl, F., Harrel, F., On the use of Buckley and James least squares regression for survival data., In: New Approaches in Applied Statistics (A. Ferligoj and A. Mrvar, eds.), Metodološki zvezki 16, Ljubljana: Eslovenia, 2000, pp. 125-134. 
  28. Stute, W., 10.1006/jmva.1993.1028, J. Multivariate Anal. 45 (1993), 89-103. Zbl0767.62036MR1222607DOI10.1006/jmva.1993.1028
  29. Stute, W., The bias of Kaplan-Meier integrals., Scand. J. Stat. 21 (1994), 475-484. Zbl0812.62042MR1310090
  30. Stute, W., 10.1080/03610929408831409, Comm. Statist. Theory Methods 23 (1994), 2671-2682. Zbl0825.62226MR1294919DOI10.1080/03610929408831409
  31. Stute, W., Distributional convergence under random censorship when covariables are present., Scand. J. Stat. 23 (1996), 461-471. Zbl0903.62045MR1439707
  32. Stute, W., 10.1214/aos/1032181175, Ann. Statist. 24 (1996), 2679-2704. Zbl0878.62027MR1425974DOI10.1214/aos/1032181175
  33. Stute, W., Nonlinear censored regression., Statist. Sinica 9 (1999), 1089-1102. Zbl0940.62061MR1744826
  34. Stute, W., Wang, J. L., The jackknife estimate of a Kaplan-Meier integral., Biometrika 81 (1994), 602-606. Zbl0809.62037MR1311103
  35. Tsiatis, A. A., 10.1214/aos/1176347504, Ann. Statist. 18 (1990), 354-372. Zbl0701.62051MR1041397DOI10.1214/aos/1176347504
  36. Wei, L. J., 10.1002/sim.4780111409, Stat. Med. 11 (1992), 1871-1879. DOI10.1002/sim.4780111409
  37. Wellner, J. A., 10.1214/aos/1176346583, Ann. Statist. 13 (1985), 150-162. Zbl0609.62061MR0773159DOI10.1214/aos/1176346583
  38. Zhou, M., Two-sided bias bound of the Kaplan-Meier estimator., Probab. Theory and Related Fields 79 (1988), 165-173. Zbl0631.62044MR0958286

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.