Bias correction on censored least squares regression models
Jesus Orbe; Vicente Núñez-Antón
Kybernetika (2012)
- Volume: 48, Issue: 5, page 1045-1063
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topOrbe, Jesus, and Núñez-Antón, Vicente. "Bias correction on censored least squares regression models." Kybernetika 48.5 (2012): 1045-1063. <http://eudml.org/doc/251404>.
@article{Orbe2012,
abstract = {This paper proposes a bias reduction of the coefficients' estimator for linear regression models when observations are randomly censored and the error distribution is unknown. The proposed bias correction is applied to the weighted least squares estimator proposed by Stute [28] [W. Stute: Consistent estimation under random censorship when covariables are present. J. Multivariate Anal. 45 (1993), 89-103.], and it is based on model-based bootstrap resampling techniques that also allow us to work with censored data. Our bias-corrected estimator proposal is evaluated and its behavior assessed in simulation studies concluding that both the bias and the mean square error are reduced with the new proposal.},
author = {Orbe, Jesus, Núñez-Antón, Vicente},
journal = {Kybernetika},
keywords = {bias; censoring; least squares; linear regression; Kaplan–Meier estimator; bias; censoring; least squares; linear regression; Kaplan-Meier estimator},
language = {eng},
number = {5},
pages = {1045-1063},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Bias correction on censored least squares regression models},
url = {http://eudml.org/doc/251404},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Orbe, Jesus
AU - Núñez-Antón, Vicente
TI - Bias correction on censored least squares regression models
JO - Kybernetika
PY - 2012
PB - Institute of Information Theory and Automation AS CR
VL - 48
IS - 5
SP - 1045
EP - 1063
AB - This paper proposes a bias reduction of the coefficients' estimator for linear regression models when observations are randomly censored and the error distribution is unknown. The proposed bias correction is applied to the weighted least squares estimator proposed by Stute [28] [W. Stute: Consistent estimation under random censorship when covariables are present. J. Multivariate Anal. 45 (1993), 89-103.], and it is based on model-based bootstrap resampling techniques that also allow us to work with censored data. Our bias-corrected estimator proposal is evaluated and its behavior assessed in simulation studies concluding that both the bias and the mean square error are reduced with the new proposal.
LA - eng
KW - bias; censoring; least squares; linear regression; Kaplan–Meier estimator; bias; censoring; least squares; linear regression; Kaplan-Meier estimator
UR - http://eudml.org/doc/251404
ER -
References
top- Akritas, M. G., Bootstrapping the Kaplan-Meier estimator., J. Amer. Statist. Assoc. 81 (1986), 1032-1038. Zbl0635.62032MR0867628
- Altman, D. G., Stavola, B. L. De, Love, S. B., Stepniewska, K. A., 10.1038/bjc.1995.364, British J. Cancer. 72 (1985), 511-518. DOI10.1038/bjc.1995.364
- Buckley, J. J., James, I. R., 10.1093/biomet/66.3.429, Biometrika 66 (1979), 429-436. Zbl0425.62051DOI10.1093/biomet/66.3.429
- Chatterjee, S., McLeish, D. L., 10.1080/03610928608829305, Comm. Statist. Theory Methods 15 (1986), 3227-3243. Zbl0616.62093MR0860480DOI10.1080/03610928608829305
- Chen, Y. Y., Hollander, M., Langberg, N. A., 10.1080/01621459.1982.10477777, J. Amer. Statist. Assoc. 77 (1982), 141-144. Zbl0504.62033MR0648036DOI10.1080/01621459.1982.10477777
- Cox, D. R., Regression models and life-tables., J. R. Stat. Soc. Ser. B. 34 (1972), 187-220. Zbl0243.62041MR0341758
- Cox, D. R., 10.1093/biomet/62.2.269, Biometrika 62 (1975), 269-276. Zbl0312.62002MR0400509DOI10.1093/biomet/62.2.269
- Davison, A. C., Hinkley, D. V., Bootstrap Methods and Their Application., Cambridge University Press, Cambridge 1997. Zbl0886.62001MR1478673
- Efron, B., The two sample problem with censored data., In: Proc. 5th Berkeley Symposium 4 (1967), pp. 831-853.
- Efron, B., 10.1080/01621459.1981.10477650, J. Amer. Statist. Assoc. 76 (1981), 312-319. Zbl0461.62039MR0624333DOI10.1080/01621459.1981.10477650
- Efron, B., Tibshirani, R. J., An Introduction to the Bootstrap., Chapman and Hall, New York 1993. Zbl0835.62038MR1270903
- Gill, R. D., Censoring and Stochastics Integrals., Math. Centre Tracts 124, Math. Centrum, Amsterdam 1980. MR0596815
- Heller, G., Simonoff, J. S., 10.1093/biomet/77.3.515, Biometrika 77 (1990), 515-520. MR1087841DOI10.1093/biomet/77.3.515
- Jin, Z., Lin, D., Wei, L. J., Ying, Z., 10.1093/biomet/90.2.341, Biometrika 90 (2003), 341-353. Zbl1034.62103MR1986651DOI10.1093/biomet/90.2.341
- Kaplan, E. L., Meier, P., 10.1080/01621459.1958.10501452, J. Amer. Statist. Assoc. 53 (1958), 457-481. Zbl0089.14801MR0093867DOI10.1080/01621459.1958.10501452
- Koul, H., Susarla, V., Van-Ryzin, J., 10.1214/aos/1176345644, Ann. Statist. 9 (1981), 1279-1288. Zbl0477.62046MR0630110DOI10.1214/aos/1176345644
- Lai, T. L., Ying, Z., 10.1016/0047-259X(92)90088-W, J. Multivariate Anal. 40 (1992), 13-45. Zbl0799.62071MR1149249DOI10.1016/0047-259X(92)90088-W
- Leurgans, S., 10.2307/2336144, Biometrika 74 (1987), 301-309. Zbl0649.62068MR0903130DOI10.2307/2336144
- Mauro, D., 10.1214/aos/1176346582, Ann. Statist. 13 (1985), 142-149. Zbl0575.62043MR0773158DOI10.1214/aos/1176346582
- Miller, R. G., 10.1093/biomet/63.3.449, Biometrika 63 (1976), 449-464. Zbl0344.62058MR0458737DOI10.1093/biomet/63.3.449
- Miller, R. G., Halpern, J., 10.1093/biomet/69.3.521, Biometrika 69 (1982), 521-531. Zbl0503.62091MR0695199DOI10.1093/biomet/69.3.521
- Orbe, J., Ferreira, E., Núñez-Antón, V., 10.1093/biostatistics/4.1.109, Biostatistics 4 (2003), 109-121. Zbl1139.62307DOI10.1093/biostatistics/4.1.109
- Reid, N., 10.1093/biomet/68.3.601, Biometrika 68 (1981), 601-608. Zbl0479.62029MR0637777DOI10.1093/biomet/68.3.601
- Reid, N., 10.1214/ss/1177010394, Statist. Sci. 9 (1994), 439-455. Zbl0955.01543MR1325436DOI10.1214/ss/1177010394
- Ritov, Y., 10.1214/aos/1176347502, Ann. Statist. 18 (1990), 303-328. Zbl0713.62045MR1041395DOI10.1214/aos/1176347502
- Schmee, J., Hahn, G. J., 10.1080/00401706.1979.10489811, Technometrics 21 (1979), 417-434. DOI10.1080/00401706.1979.10489811
- Stare, J., Heinzl, F., Harrel, F., On the use of Buckley and James least squares regression for survival data., In: New Approaches in Applied Statistics (A. Ferligoj and A. Mrvar, eds.), Metodološki zvezki 16, Ljubljana: Eslovenia, 2000, pp. 125-134.
- Stute, W., 10.1006/jmva.1993.1028, J. Multivariate Anal. 45 (1993), 89-103. Zbl0767.62036MR1222607DOI10.1006/jmva.1993.1028
- Stute, W., The bias of Kaplan-Meier integrals., Scand. J. Stat. 21 (1994), 475-484. Zbl0812.62042MR1310090
- Stute, W., 10.1080/03610929408831409, Comm. Statist. Theory Methods 23 (1994), 2671-2682. Zbl0825.62226MR1294919DOI10.1080/03610929408831409
- Stute, W., Distributional convergence under random censorship when covariables are present., Scand. J. Stat. 23 (1996), 461-471. Zbl0903.62045MR1439707
- Stute, W., 10.1214/aos/1032181175, Ann. Statist. 24 (1996), 2679-2704. Zbl0878.62027MR1425974DOI10.1214/aos/1032181175
- Stute, W., Nonlinear censored regression., Statist. Sinica 9 (1999), 1089-1102. Zbl0940.62061MR1744826
- Stute, W., Wang, J. L., The jackknife estimate of a Kaplan-Meier integral., Biometrika 81 (1994), 602-606. Zbl0809.62037MR1311103
- Tsiatis, A. A., 10.1214/aos/1176347504, Ann. Statist. 18 (1990), 354-372. Zbl0701.62051MR1041397DOI10.1214/aos/1176347504
- Wei, L. J., 10.1002/sim.4780111409, Stat. Med. 11 (1992), 1871-1879. DOI10.1002/sim.4780111409
- Wellner, J. A., 10.1214/aos/1176346583, Ann. Statist. 13 (1985), 150-162. Zbl0609.62061MR0773159DOI10.1214/aos/1176346583
- Zhou, M., Two-sided bias bound of the Kaplan-Meier estimator., Probab. Theory and Related Fields 79 (1988), 165-173. Zbl0631.62044MR0958286
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.