On subfields of
Let p be a prime number, ℚp the field of p-adic numbers, and a fixed algebraic closure of ℚp. We provide an analytic version of the normal basis theorem which holds for normal extensions of intermediate fields ℚp ⊆ K ⊆ L ⊆ .
Let be a prime number, the field of -adic numbers and the completion of the algebraic closure of . In this paper we obtain a representation theorem for rigid analytic functions on which are equivariant with respect to the Galois group , where is a lipschitzian element of and denotes the -neighborhood of the -orbit of .
Let p be a prime number, and let [...] Q¯ p be the completion of Q with respect to the pseudovaluation w which extends the p-adic valuation vp. In this paper our goal is to give a characterization of closed subfields of [...] Q¯ p , the completion of Q with respect w, i.e. the spectral extension of the p-adic valuation vp on Q.
Page 1