The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Semistability of Frobenius direct images over curves

Vikram B. MehtaChristian Pauly — 2007

Bulletin de la Société Mathématique de France

Let X be a smooth projective curve of genus g 2 defined over an algebraically closed field k of characteristic p > 0 . Given a semistable vector bundle  E over X , we show that its direct image F * E under the Frobenius map F of X is again semistable. We deduce a numerical characterization of the stable rank- p vector bundles  F * L , where L is a line bundle over X .

Page 1

Download Results (CSV)