The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Trees of visible components in the Mandelbrot set

Virpi Kauko — 2000

Fundamenta Mathematicae

We discuss the tree structures of the sublimbs of the Mandelbrot set M, using internal addresses of hyperbolic components. We find a counterexample to a conjecture by Eike Lau and Dierk Schleicher concerning topological equivalence between different trees of visible components, and give a new proof to a theorem of theirs concerning the periods of hyperbolic components in various trees.

Shadow trees of Mandelbrot sets

Virpi Kauko — 2003

Fundamenta Mathematicae

The topology and combinatorial structure of the Mandelbrot set d (of degree d ≥ 2) can be studied using symbolic dynamics. Each parameter is mapped to a kneading sequence, or equivalently, an internal address; but not every such sequence is realized by a parameter in d . Thus the abstract Mandelbrot set is a subspace of a larger, partially ordered symbol space, Λ d . In this paper we find an algorithm to construct “visible trees” from symbolic sequences which works whether or not the sequence is realized....

Page 1

Download Results (CSV)