In this paper the context of independent sets is assigned to the complete lattice (P(M),⊆) of all subsets of a non-empty set M. Some properties of this context, especially the irreducibility and the span, are investigated.
Join-independent and meet-independent sets in complete lattices were defined in [6]. According to [6], to each complete lattice (L,≤) and a cardinal number p one can assign (in a unique way) an incidence structure of independent sets of (L,≤). In this paper some lattice-inadmissible incidence structures are founded, i.e. such incidence structures that are not isomorphic to any incidence structure .
The class of commutative dually residuated lattice ordered monoids (-monoids) contains among others Abelian lattice ordered groups, algebras of Hájek’s Basic fuzzy logic and Brouwerian algebras. In the paper, a unary operation of negation in bounded -monoids is introduced, its properties are studied and the sets of regular and dense elements of -monoids are described.
To every subset of a complete lattice we assign subsets , and define join-closed and meet-closed sets in . Some properties of such sets are proved. Join- and meet-closed sets in power-set lattices are characterized. The connections about join-independent (meet-independent) and join-closed (meet-closed) subsets are also presented in this paper.
Download Results (CSV)