Bounded dually residuated lattice ordered monoids as a generalization of fuzzy structures
Jiří Rachůnek; Vladimír Slezák
Mathematica Slovaca (2006)
- Volume: 56, Issue: 2, page 223-233
- ISSN: 0139-9918
Access Full Article
topHow to cite
topRachůnek, Jiří, and Slezák, Vladimír. "Bounded dually residuated lattice ordered monoids as a generalization of fuzzy structures." Mathematica Slovaca 56.2 (2006): 223-233. <http://eudml.org/doc/32379>.
@article{Rachůnek2006,
author = {Rachůnek, Jiří, Slezák, Vladimír},
journal = {Mathematica Slovaca},
keywords = {residuated lattices; fuzzy logic},
language = {eng},
number = {2},
pages = {223-233},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Bounded dually residuated lattice ordered monoids as a generalization of fuzzy structures},
url = {http://eudml.org/doc/32379},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Rachůnek, Jiří
AU - Slezák, Vladimír
TI - Bounded dually residuated lattice ordered monoids as a generalization of fuzzy structures
JO - Mathematica Slovaca
PY - 2006
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 56
IS - 2
SP - 223
EP - 233
LA - eng
KW - residuated lattices; fuzzy logic
UR - http://eudml.org/doc/32379
ER -
References
top- CHANG C. C., Algebraic analysis of many valued logic, Trans. Amer. Math. Soc. 88 (1958), 467-490. (1958) MR0094302
- CIGNOLI R. L. O.-D'OTTAVIANO I. M. L.-MUNDICI D., Algebraic Foundations of Many-Valued Reasoning, Kluwer Acad. Publ., Dordrecht-Boston-London, 2000. Zbl0937.06009MR1786097
- CIGNOLI R.-TORRENS A., Hájek basic fuzzy logic and Lukasiewicz infinite valued logic, Arch. Math. Logic 42 (2003), 361-370. Zbl1025.03018MR2018087
- DI NOLA A.-GEORGESCU G.-IORGULESCU A., Pseudo BL-algebras I, Mult.-Valued Log. 8 (2002), 673-714. Zbl1028.06007MR1948853
- DI NOLA A.-GEORGESCU G.-IORGULESCU A., Pseudo BL-algebras II, Mult.-Valued Log. 8 (2002), 715-750. Zbl1028.06008MR1948854
- DVUREČENSKIJ A.-PULMANNOVÁ S., New Trends in Quantum Structures, Kluwer Acad. Publ./Ister Science, Dordrecht/Bratislava, 2000. Zbl0987.81005MR1861369
- GEORGESCU G., Bosbach states on fuzzy structures, Soft Comput. 8 (2004), 217-230. Zbl1081.06012
- GEORGESCU G.-IORGULESCU A., Pseudo MV-algebras, Mult.-Valued Log. 6 (2001), 95-135. Zbl1014.06008MR1817439
- HÁJEK P., Metamathematics of Fuzzy Logic, Kluwer Acad. Publ., Amsterdam, 1998. (1998) Zbl0937.03030MR1900263
- HÁJEK P., Fuzzy logics with non-commutative conjunction, J. Logic Comput. 13 (2003), 469 479. MR1999959
- KOVÁŘ T., A General Theory of Dually Residuated Lattice Ordered Monoids, Ph.D. Thesis, Palacky Univ., Olomouc, 1996. (1996)
- KÜHR J., Pseudo BL-algebras and DRI-monoids, Math. Bohem. 128 (2003), 199-208. MR1995573
- KÜHR J., Dually Residuated Lattice Ordered Monoids, Ph.D. Thesis, Palacky Univ., Olomouc, 2003. Zbl1141.06014
- LAMBEK J., Some lattice models of bilinear logic, Algebra Universalis 34 (1995), 541-550. (1995) Zbl0840.03044MR1357483
- RACHŮNEK J., A non-commutative generalization of MV-algebras, Czechoslovak Math. J. 52 (2002), 255-273. Zbl1012.06012MR1905434
- RACHŮNEK J., Prime spectra of non-commutative generalizations of MV-algebras, Algebra Universalis 48 (2002), 151-169. Zbl1058.06015MR1929902
- RACHŮNEK J.-SLEZÁK V., Negation in bounded commutative DRI-monoids, Czechoslovak Math. J. (To appear). MR2291772
- SWAMY K. L. N., Dually residuated lattice ordered semigroups, Math. Ann. 159 (1965), 105-114. (1965) Zbl0138.02104MR0183797
Citations in EuDML Documents
top- Anatolij Dvurečenskij, Jiří Rachůnek, On Riečan and Bosbach states for bounded non-commutative -monoids
- Jiří Rachůnek, Dana Šalounová, Local bounded commutative residuated -monoids
- Jiří Rachůnek, Zdeněk Svoboda, Monotone modal operators on bounded integral residuated lattices
- Filip Švrček, Interior and closure operators on bounded residuated lattice ordered monoids
- Jiří Rachůnek, Dana Šalounová, Classes of filters in generalizations of commutative fuzzy structures
- Jiří Rachůnek, Dana Šalounová, Modal operators on bounded residuated -monoids
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.