The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let X and Y be two smooth Deligne-Mumford stacks and consider a pair of functions f: X →
, g:Y →
. Assuming that there exists a complex of sheaves on X ×
Y which induces an equivalence of D b(X) and D b(Y), we show that there is also an equivalence of the singular derived categories of the fibers f −1(0) and g −1(0). We apply this statement in the setting of McKay correspondence, and generalize a theorem of Orlov on the derived category of a Calabi-Yau hypersurface in a weighted projective...
Download Results (CSV)