The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Countably convex G δ sets

Vladimir FonfMenachem Kojman — 2001

Fundamenta Mathematicae

We investigate countably convex G δ subsets of Banach spaces. A subset of a linear space is countably convex if it can be represented as a countable union of convex sets. A known sufficient condition for countable convexity of an arbitrary subset of a separable normed space is that it does not contain a semi-clique [9]. A semi-clique in a set S is a subset P ⊆ S so that for every x ∈ P and open neighborhood u of x there exists a finite set X ⊆ P ∩ u such that conv(X) ⊈ S. For closed sets this condition...

On the uniform ergodic theorem in Banach spaces that do not contain duals

Vladimir FonfMichael LinAlexander Rubinov — 1996

Studia Mathematica

Let T be a power-bounded linear operator in a real Banach space X. We study the equality (*) ( I - T ) X = z X : s u p n k = 0 n T k z < . For X separable, we show that if T satisfies and is not uniformly ergodic, then ( I - T ) X ¯ contains an isomorphic copy of an infinite-dimensional dual Banach space. Consequently, if X is separable and does not contain isomorphic copies of infinite-dimensional dual Banach spaces, then (*) is equivalent to uniform ergodicity. As an application, sufficient conditions for uniform ergodicity of irreducible Markov chains...

On Tauberian and co-Tauberian operators.

Sudipta DuttaVladimir P. Fonf — 2006

Extracta Mathematicae

We show that a Banach space X has an infinite dimensional reflexive subspace (quotient) if and only if there exist a Banach space Z and a non-isomorphic one-to-one (dense range) Tauberian (co-Tauberian) operator form X to Z (Z to X). We also give necessary and sufficient condition for the existence of a Tauberian operator from a separable Banach space to c which in turn generalizes a result of Johnson and Rosenthal. Another application of our result shows that if X** is separable, then there exists...

Poisson's equation and characterizations of reflexivity of Banach spaces

Vladimir P. FonfMichael LinPrzemysław Wojtaszczyk — 2011

Colloquium Mathematicae

Let X be a Banach space with a basis. We prove that X is reflexive if and only if every power-bounded linear operator T satisfies Browder’s equality x X : s u p n | | k = 1 n T k x | | < = (I-T)X . We then deduce that X (with a basis) is reflexive if and only if every strongly continuous bounded semigroup T t : t 0 with generator A satisfies A X = x X : s u p s > 0 | | 0 s T t x d t | | < . The range (I-T)X (respectively, AX for continuous time) is the space of x ∈ X for which Poisson’s equation (I-T)y = x (Ay = x in continuous time) has a solution y ∈ X; the above equalities for the ranges...

On a functional-analysis approach to orthogonal sequences problems.

Sea T un operador lineal acotado e inyectivo de un espacio de Banach X en un espacio de Hilbert H con rango denso y sea {x} ⊂ X una sucesión tal que {Tx} es ortogonal. Se estudian propiedades de {Tx} dependientes de propiedades de {x}. También se estudia la ""situación opuesta"", es decir, la acción de un operador T : H → X sobre sucesiones ortogonales.

Page 1

Download Results (CSV)