Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

General construction of Banach-Grassmann algebras

Vladimir G. Pestov — 1992

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We show that a free graded commutative Banach algebra over a (purely odd) Banach space E is a Banach-Grassmann algebra in the sense of Jadczyk and Pilch if and only if E is infinite-dimensional. Thus, a large amount of new examples of separable Banach-Grassmann algebras arise in addition to the only one example previously known due to A. Rogers.

On a result of K. P. Hart about non-existence of measurable solutions to the discrete expectation maximization problem

Vladimir G. Pestov — 2023

Commentationes Mathematicae Universitatis Carolinae

It was shown that there is a statistical learning problem – a version of the expectation maximization (EMX) problem – whose consistency in a domain of cardinality continuum under the family of purely atomic probability measures and with finite hypotheses is equivalent to a version of the continuum hypothesis, and thus independent of ZFC. K. P. Hart had subsequently proved that no solution to the EMX problem can be Borel measurable with regard to an uncountable standard Borel structure on X , and...

Page 1

Download Results (CSV)