A correspondence between finite-dimensional Lie superalgebras and supergroups.
We show that a free graded commutative Banach algebra over a (purely odd) Banach space is a Banach-Grassmann algebra in the sense of Jadczyk and Pilch if and only if is infinite-dimensional. Thus, a large amount of new examples of separable Banach-Grassmann algebras arise in addition to the only one example previously known due to A. Rogers.
It was shown that there is a statistical learning problem – a version of the expectation maximization (EMX) problem – whose consistency in a domain of cardinality continuum under the family of purely atomic probability measures and with finite hypotheses is equivalent to a version of the continuum hypothesis, and thus independent of ZFC. K. P. Hart had subsequently proved that no solution to the EMX problem can be Borel measurable with regard to an uncountable standard Borel structure on , and...
Page 1