General construction of Banach-Grassmann algebras
- Volume: 3, Issue: 3, page 223-231
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topPestov, Vladimir G.. "General construction of Banach-Grassmann algebras." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 3.3 (1992): 223-231. <http://eudml.org/doc/244069>.
@article{Pestov1992,
abstract = {We show that a free graded commutative Banach algebra over a (purely odd) Banach space \( E \) is a Banach-Grassmann algebra in the sense of Jadczyk and Pilch if and only if \( E \) is infinite-dimensional. Thus, a large amount of new examples of separable Banach-Grassmann algebras arise in addition to the only one example previously known due to A. Rogers.},
author = {Pestov, Vladimir G.},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Banach-Grassmann Algebras; Super analysis; Graded algebras; superanalysis; graded-commutative algebra; Banach-Grassmann algebra; superfield expansion; Jadczyk-Pilch self-duality property; Rogers algebra; exterior algebras over Banach spaces; free graded commutative Banach algebra over a Banach space},
language = {eng},
month = {9},
number = {3},
pages = {223-231},
publisher = {Accademia Nazionale dei Lincei},
title = {General construction of Banach-Grassmann algebras},
url = {http://eudml.org/doc/244069},
volume = {3},
year = {1992},
}
TY - JOUR
AU - Pestov, Vladimir G.
TI - General construction of Banach-Grassmann algebras
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1992/9//
PB - Accademia Nazionale dei Lincei
VL - 3
IS - 3
SP - 223
EP - 231
AB - We show that a free graded commutative Banach algebra over a (purely odd) Banach space \( E \) is a Banach-Grassmann algebra in the sense of Jadczyk and Pilch if and only if \( E \) is infinite-dimensional. Thus, a large amount of new examples of separable Banach-Grassmann algebras arise in addition to the only one example previously known due to A. Rogers.
LA - eng
KW - Banach-Grassmann Algebras; Super analysis; Graded algebras; superanalysis; graded-commutative algebra; Banach-Grassmann algebra; superfield expansion; Jadczyk-Pilch self-duality property; Rogers algebra; exterior algebras over Banach spaces; free graded commutative Banach algebra over a Banach space
UR - http://eudml.org/doc/244069
ER -
References
top- BARTOCCI, C. - BRUZZO, U. - HERNÁNDEZ RUIPÉREZ, D., The geometry of supermanifolds. Kluwer Academic Publishers Group, Dordrecht1991. Zbl0743.53001MR1175751DOI10.1007/978-94-011-3504-7
- KOBAYASHI, Y. - NAGAMACHI, SH., Usage of infinite-dimensional nuclear algebras in superanalysis. Lett. Math. Phys., 14, 1987, 15-23. Zbl0638.46054MR901695DOI10.1007/BF00403465
- VLADIMIROV, V. S. - VOLOVICH, I. V., Superanalysis I. Differential calculus. Theor. Math. Phys., 60, 1984, 317-335. Zbl0552.46023MR749002
- A. Yu KHRENNIKOV, , Functional superanalysis. Russian Math. Surveys, 43, 1988, 103-137. Zbl0665.46031MR940661DOI10.1070/RM1988v043n02ABEH001713
- BRYANT, P., DeWitt supermanifolds and infinite-dimensional ground rings. J. London Math. Soc., 39, 1989, 347-368. Zbl0636.58011MR991667DOI10.1112/jlms/s2-39.2.347
- CHOQUET, Y., Graded Bundles and Supermanifolds. Monographs and Textbooks in Physical Sciences, Bibliopolis, Naples1990. Zbl0707.58006MR1026098
- DE WITT, B. S., Supermanifolds. Cambridge University Press, London1984. Zbl0623.53042MR778559
- BEREZIN, F. A., Introduction to superanalysis. D. Reidel Publ. Co., Dordrecht-Boston, MA, 1987. Zbl0659.58001MR914369
- ARENS, R., A generalization of normed rings. Pacif. J. Math., 2, 1952, 455-471. Zbl0047.35802MR51445
- MICHAEL, E., Locally multiplicatively-convex topological algebras. Mem. Amer. Math. Soc., 1952, 79 pp. Zbl0047.35502MR51444
- PESTOV, V., Even sectors of Lie superalgebras as locally convex Lie algebras. J. Math. Phys., 32, 1991, 24-32. Zbl0693.17015MR1083081DOI10.1063/1.529126
- PESTOV, V., Interpreting superanalyticity in terms of convergent series. Class. Quantum Grav., 6, 1989, L145-L159. Zbl0676.58015MR1005646
- PESTOV, V., Ground algebras for superanalysis. Rep. Math. Phys., 1991, to appear. Zbl0681.15014MR1179836DOI10.1016/0034-4877(91)90047-Q
- JADCZYK, A. - PILCH, K., Superspaces and supersymmetries. Commun. Math. Phys., 78, 1981, 373-390. Zbl0464.58006MR603500
- BRUZZO, U. - CIANCI, R., On the structure of superfields in a field theory on a supermanifold. Lett. Math. Phys., 11, 1986, 21-26. Zbl0587.58013MR824672DOI10.1007/BF00417460
- BRUZZO, U., Geometry of rigid supersymmetry. Hadronic J., 9, 1986, 25-30. Zbl0593.53056MR859469
- ROGERS, A., A global theory of supermanifolds. J. Math. Phys., 21, 1980, 1352-1365. Zbl0447.58003MR574696DOI10.1063/1.524585
- TEOFILATTO, P., Enlargeable graded Lie algebras of supersymmetry. J. Math. Phys., 28, 1987, 991-996. Zbl0636.17009MR887013DOI10.1063/1.527519
- JADCZYK, A. - PILCH, K., Classical limit of CAR and self-duality in the infinite-dimensional Grassmann algebra. In: B. JANCEWICZ - J. LUKIERSKI, Quantum Theory of Particles and Fields. World Scientific, Singapore1983. MR772783
- LINDENSTRAUSS, J. - TZAFRIRI, K., Classical Banach Spaces. Vol. 1, Springer Verlag, Berlin-Heidelberg-New York1977. Zbl0362.46013
- SCHAEFER, H. H., Topological Vector Spaces. The Macmillan Co., New York-London1966. Zbl0217.16002MR193469
- KHELEMSKII, A. YA., Banach and Polynormed Algebras. General Theory, Representations, Homology. Nauka, Moscow1989 (in Russian). Zbl0688.46025MR1031991
- MANIN, YU. I., Gauge field theory and complex geometry. Springer Verlag, Berlin1988. Zbl0641.53001MR954833
- CARTAN, H., Formes Différentielles. Hermann, Paris1967. Zbl0184.12701MR231303
- KUPSCH, J., Measures for fermionic integration. Fortschr. Phys., 35, 1987, 415-436. MR899880DOI10.1002/prop.2190350503
- IVASHCHUK, V. D., On annihilators in infinite-dimensional Grassmann-Banach algebras. Teor. i mat. fizika, 79, 1989, 30-40 (in Russian). Zbl0677.58009MR1000941DOI10.1007/BF01015775
- ARKHANGEL'SKII, A. V., Classes of topological groups. Russian Math. Surveys, 36, 1981, 151-174. Zbl0488.22001MR622722
- BEREZIN, F. A., The Method of Second Quantization. Academic Press, New York1966. Zbl0151.44001MR208930
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.