General construction of Banach-Grassmann algebras

Vladimir G. Pestov

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1992)

  • Volume: 3, Issue: 3, page 223-231
  • ISSN: 1120-6330

Abstract

top
We show that a free graded commutative Banach algebra over a (purely odd) Banach space E is a Banach-Grassmann algebra in the sense of Jadczyk and Pilch if and only if E is infinite-dimensional. Thus, a large amount of new examples of separable Banach-Grassmann algebras arise in addition to the only one example previously known due to A. Rogers.

How to cite

top

Pestov, Vladimir G.. "General construction of Banach-Grassmann algebras." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 3.3 (1992): 223-231. <http://eudml.org/doc/244069>.

@article{Pestov1992,
abstract = {We show that a free graded commutative Banach algebra over a (purely odd) Banach space \( E \) is a Banach-Grassmann algebra in the sense of Jadczyk and Pilch if and only if \( E \) is infinite-dimensional. Thus, a large amount of new examples of separable Banach-Grassmann algebras arise in addition to the only one example previously known due to A. Rogers.},
author = {Pestov, Vladimir G.},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Banach-Grassmann Algebras; Super analysis; Graded algebras; superanalysis; graded-commutative algebra; Banach-Grassmann algebra; superfield expansion; Jadczyk-Pilch self-duality property; Rogers algebra; exterior algebras over Banach spaces; free graded commutative Banach algebra over a Banach space},
language = {eng},
month = {9},
number = {3},
pages = {223-231},
publisher = {Accademia Nazionale dei Lincei},
title = {General construction of Banach-Grassmann algebras},
url = {http://eudml.org/doc/244069},
volume = {3},
year = {1992},
}

TY - JOUR
AU - Pestov, Vladimir G.
TI - General construction of Banach-Grassmann algebras
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1992/9//
PB - Accademia Nazionale dei Lincei
VL - 3
IS - 3
SP - 223
EP - 231
AB - We show that a free graded commutative Banach algebra over a (purely odd) Banach space \( E \) is a Banach-Grassmann algebra in the sense of Jadczyk and Pilch if and only if \( E \) is infinite-dimensional. Thus, a large amount of new examples of separable Banach-Grassmann algebras arise in addition to the only one example previously known due to A. Rogers.
LA - eng
KW - Banach-Grassmann Algebras; Super analysis; Graded algebras; superanalysis; graded-commutative algebra; Banach-Grassmann algebra; superfield expansion; Jadczyk-Pilch self-duality property; Rogers algebra; exterior algebras over Banach spaces; free graded commutative Banach algebra over a Banach space
UR - http://eudml.org/doc/244069
ER -

References

top
  1. BARTOCCI, C. - BRUZZO, U. - HERNÁNDEZ RUIPÉREZ, D., The geometry of supermanifolds. Kluwer Academic Publishers Group, Dordrecht1991. Zbl0743.53001MR1175751DOI10.1007/978-94-011-3504-7
  2. KOBAYASHI, Y. - NAGAMACHI, SH., Usage of infinite-dimensional nuclear algebras in superanalysis. Lett. Math. Phys., 14, 1987, 15-23. Zbl0638.46054MR901695DOI10.1007/BF00403465
  3. VLADIMIROV, V. S. - VOLOVICH, I. V., Superanalysis I. Differential calculus. Theor. Math. Phys., 60, 1984, 317-335. Zbl0552.46023MR749002
  4. A. Yu KHRENNIKOV, , Functional superanalysis. Russian Math. Surveys, 43, 1988, 103-137. Zbl0665.46031MR940661DOI10.1070/RM1988v043n02ABEH001713
  5. BRYANT, P., DeWitt supermanifolds and infinite-dimensional ground rings. J. London Math. Soc., 39, 1989, 347-368. Zbl0636.58011MR991667DOI10.1112/jlms/s2-39.2.347
  6. CHOQUET, Y., Graded Bundles and Supermanifolds. Monographs and Textbooks in Physical Sciences, Bibliopolis, Naples1990. Zbl0707.58006MR1026098
  7. DE WITT, B. S., Supermanifolds. Cambridge University Press, London1984. Zbl0623.53042MR778559
  8. BEREZIN, F. A., Introduction to superanalysis. D. Reidel Publ. Co., Dordrecht-Boston, MA, 1987. Zbl0659.58001MR914369
  9. ARENS, R., A generalization of normed rings. Pacif. J. Math., 2, 1952, 455-471. Zbl0047.35802MR51445
  10. MICHAEL, E., Locally multiplicatively-convex topological algebras. Mem. Amer. Math. Soc., 1952, 79 pp. Zbl0047.35502MR51444
  11. PESTOV, V., Even sectors of Lie superalgebras as locally convex Lie algebras. J. Math. Phys., 32, 1991, 24-32. Zbl0693.17015MR1083081DOI10.1063/1.529126
  12. PESTOV, V., Interpreting superanalyticity in terms of convergent series. Class. Quantum Grav., 6, 1989, L145-L159. Zbl0676.58015MR1005646
  13. PESTOV, V., Ground algebras for superanalysis. Rep. Math. Phys., 1991, to appear. Zbl0681.15014MR1179836DOI10.1016/0034-4877(91)90047-Q
  14. JADCZYK, A. - PILCH, K., Superspaces and supersymmetries. Commun. Math. Phys., 78, 1981, 373-390. Zbl0464.58006MR603500
  15. BRUZZO, U. - CIANCI, R., On the structure of superfields in a field theory on a supermanifold. Lett. Math. Phys., 11, 1986, 21-26. Zbl0587.58013MR824672DOI10.1007/BF00417460
  16. BRUZZO, U., Geometry of rigid supersymmetry. Hadronic J., 9, 1986, 25-30. Zbl0593.53056MR859469
  17. ROGERS, A., A global theory of supermanifolds. J. Math. Phys., 21, 1980, 1352-1365. Zbl0447.58003MR574696DOI10.1063/1.524585
  18. TEOFILATTO, P., Enlargeable graded Lie algebras of supersymmetry. J. Math. Phys., 28, 1987, 991-996. Zbl0636.17009MR887013DOI10.1063/1.527519
  19. JADCZYK, A. - PILCH, K., Classical limit of CAR and self-duality in the infinite-dimensional Grassmann algebra. In: B. JANCEWICZ - J. LUKIERSKI, Quantum Theory of Particles and Fields. World Scientific, Singapore1983. MR772783
  20. LINDENSTRAUSS, J. - TZAFRIRI, K., Classical Banach Spaces. Vol. 1, Springer Verlag, Berlin-Heidelberg-New York1977. Zbl0362.46013
  21. SCHAEFER, H. H., Topological Vector Spaces. The Macmillan Co., New York-London1966. Zbl0217.16002MR193469
  22. KHELEMSKII, A. YA., Banach and Polynormed Algebras. General Theory, Representations, Homology. Nauka, Moscow1989 (in Russian). Zbl0688.46025MR1031991
  23. MANIN, YU. I., Gauge field theory and complex geometry. Springer Verlag, Berlin1988. Zbl0641.53001MR954833
  24. CARTAN, H., Formes Différentielles. Hermann, Paris1967. Zbl0184.12701MR231303
  25. KUPSCH, J., Measures for fermionic integration. Fortschr. Phys., 35, 1987, 415-436. MR899880DOI10.1002/prop.2190350503
  26. IVASHCHUK, V. D., On annihilators in infinite-dimensional Grassmann-Banach algebras. Teor. i mat. fizika, 79, 1989, 30-40 (in Russian). Zbl0677.58009MR1000941DOI10.1007/BF01015775
  27. ARKHANGEL'SKII, A. V., Classes of topological groups. Russian Math. Surveys, 36, 1981, 151-174. Zbl0488.22001MR622722
  28. BEREZIN, F. A., The Method of Second Quantization. Academic Press, New York1966. Zbl0151.44001MR208930

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.