Currently displaying 1 – 8 of 8

Showing per page

Order by Relevance | Title | Year of publication

Dynamical systems with several equilibria and natural Liapunov functions

Vladimir Răsvan — 1998

Archivum Mathematicum

Dynamical systems with several equilibria occur in various fields of science and engineering: electrical machines, chemical reactions, economics, biology, neural networks. As pointed out by many researchers, good results on qualitative behaviour of such systems may be obtained if a Liapunov function is available. Fortunately for almost all systems cited above the Liapunov function is associated in a natural way as an energy of a certain kind and it is at least nonincreasing along systems solutions....

Around certain critical cases in stability studies in hydraulic engineering

Vladimir Răsvan — 2023

Archivum Mathematicum

It is considered the mathematical model of a benchmark hydroelectric power plant containing a water reservoir (lake), two water conduits (the tunnel and the turbine penstock), the surge tank and the hydraulic turbine; all distributed (Darcy-Weisbach) and local hydraulic losses are neglected,the only energy dissipator remains the throttling of the surge tank. Exponential stability would require asymptotic stability of the difference operator associated to the model. However in this case this stability...

Stability and sliding modes for a class of nonlinear time delay systems

Vladimir B. Răsvan — 2011

Mathematica Bohemica

The following time delay system x ˙ = A x ( t ) + 1 r b q i * x ( t - τ i ) - b ϕ ( c * x ( t ) ) is considered, where ϕ : may have discontinuities, in particular at the origin. The solution is defined using the “redefined nonlinearity” concept. For such systems sliding modes are discussed and a frequency domain inequality for global asymptotic stability is given.

Page 1

Download Results (CSV)