Numerical simulation of turbulent flows is one of the great challenges in Computational Fluid Dynamics (CFD). In general, Direct Numerical Simulation (DNS) is not feasible due to limited computer resources (performance and memory), and the use of a turbulence model becomes necessary. The paper will discuss several aspects of two approaches of turbulent modeling—Large Eddy Simulation (LES) and Variational Multiscale (VMS) models. Topics which will be addressed are the detailed derivation of these...
An extension of the local projection stabilization (LPS) finite element method for convection-diffusion-reaction equations is presented and analyzed, both in the steady-state and the transient setting. In addition to the standard LPS method, a nonlinear crosswind diffusion term is introduced that accounts for the reduction of spurious oscillations. The existence of a solution can be proved and, depending on the choice of the stabilization parameter, also its uniqueness. Error estimates are derived...
This paper presents a review and a computational comparison of various
stabilization techniques developed to diminish spurious oscillations in finite element solutions of scalar stationary convection-diffusion equations. All these methods are defined by enriching the popular SUPG discretization by additional stabilization terms. Although some of the methods can substantially enhance the quality of the discrete solutions in comparison to the SUPG method, any of the methods can fail in very simple...
Download Results (CSV)