A local projection stabilization finite element method with nonlinear crosswind diffusion for convection-diffusion-reaction equations
Gabriel R. Barrenechea; Volker John; Petr Knobloch
- Volume: 47, Issue: 5, page 1335-1366
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. Augustin, A. Caiazzo, A. Fiebach, J. Fuhrmann, V. John, A. Linke and R. Umla, An assessment of discretizations for convection-dominated convection-diffusion equations. Comput. Methods Appl. Mech. Engrg.200 (2011) 3395–3409. Zbl1230.76021MR2844065
- [2] R. Becker and M. Braack, A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo38 (2001) 173–199. Zbl1008.76036MR1890352
- [3] R. Becker and M. Braack, A two-level stabilization scheme for the Navier-Stokes equations, Proc. of ENUMATH 2003, Numerical Mathematics and Advanced Applications, edited by M. Feistauer, V. Dolejıš´, P. Knobloch and K. Najzar. Springer-Verlag, Berlin (2004) 123–130. Zbl1198.76062MR2121360
- [4] M. Braack and E. Burman, Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method. SIAM J. Numer. Anal.43 (2006) 2544–2566. Zbl1109.35086MR2206447
- [5] M. Braack, E. Burman, V. John and G. Lube, Stabilized finite element methods for the generalized Oseen problem. Comput. Methods Appl. Mech. Engrg.196 (2007) 853–866. Zbl1120.76322MR2278180
- [6] A.N. Brooks and T.J.R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg.32 (1982) 199–259. Zbl0497.76041MR679322
- [7] E. Burman and A. Ern, Stabilized Galerkin approximation of convection-diffusion-reaction equations: discrete maximum principle and convergence. Math. Comput.74 (2005) 1637–1652. Zbl1078.65088MR2164090
- [8] E. Burman and M.A. Fernández, Finite element methods with symmetric stabilization for the transient convection-diffusion-reaction equation. Comput. Methods Appl. Mech. Engrg.198 (2009) 2508–2519. Zbl1228.76081MR2536082
- [9] E. Burman and P. Hansbo, Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems. Comput. Methods Appl. Mech. Engrg.193 (2004) 1437–1453. Zbl1085.76033MR2068903
- [10] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). Zbl0511.65078MR520174
- [11] R. Codina, A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection-diffusion equation. Comput. Methods Appl. Mech. Engrg.110 (1993) 325–342. Zbl0844.76048MR1256324
- [12] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Springer-Verlag, New York (2004). Zbl1059.65103MR2050138
- [13] L.P. Franca, S.L. Frey and T.J.R. Hughes, Stabilized finite element methods: I. Application to the advective-diffusive model. Comput. Methods Appl. Mech. Engrg.95 (1992) 253–276. Zbl0759.76040MR1155924
- [14] L.P. Franca and F. Valentin, On an improved unusual stabilized finite element method for the advective-reactive-diffusive equation. Comput. Methods Appl. Mech. Engrg.190 (2000) 1785–1800. Zbl0976.76038MR1807478
- [15] S. Ganesan and L. Tobiska, Stabilization by local projection for convection-diffusion and incompressible flow problems. J. Sci. Comput.43 (2010) 326–342. Zbl1203.76138MR2639639
- [16] T.J.R. Hughes, L.P. Franca and G.M. Hulbert, A new finite element formulation for computational fluid dynamics. VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Engrg. 73 (1989) 173–189. Zbl0697.76100MR1002621
- [17] V. John and P. Knobloch, On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations: Part I – A review. Comput. Methods Appl. Mech. Engrg.196 (2007) 2197–2215. Zbl1173.76342MR2302890
- [18] V. John and P. Knobloch, On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations: Part II – Analysis for P1 and Q1 finite elements. Comput. Methods Appl. Mech. Engrg.197 (2008) 1997–2014. Zbl1194.76122MR2417168
- [19] V. John, P. Knobloch and S.B. Savescu, A posteriori optimization of parameters in stabilized methods for convection-diffusion problems – Part I. Comput. Methods Appl. Mech. Engrg.200 (2011) 2916–2929. Zbl1230.76026MR2824164
- [20] V. John, J.M. Maubach and L. Tobiska, Nonconforming streamline-diffusion-finite-element-methods for convection-diffusion problems. Numer. Math.78 (1997) 165–188. Zbl0898.65068MR1485996
- [21] V. John, T. Mitkova, M. Roland, K. Sundmacher, L. Tobiska and A. Voigt, Simulations of population balance systems with one internal coordinate using finite element methods. Chem. Engrg. Sci.64 (2009) 733–741.
- [22] V. John and J. Novo, Error analysis of the SUPG finite element discretization of evolutionary convection-diffusion-reaction equations. SIAM J. Numer. Anal.49 (2011) 1149–1176. Zbl1233.65065MR2812562
- [23] V. John and E. Schmeyer, Finite element methods for time-dependent convection-diffusion-reaction equations with small diffusion. Comput. Methods Appl. Mech. Engrg.198 (2008) 475–494. Zbl1228.76088MR2479278
- [24] P. Knobloch, A generalization of the local projection stabilization for convection-diffusion-reaction equations. SIAM J. Numer. Anal.48 (2010) 659–680. Zbl1251.65159MR2670000
- [25] P. Knobloch, Local projection method for convection-diffusion-reaction problems with projection spaces defined on overlapping sets. Proc. of ENUMATH 2009, Numerical Mathematics and Advanced Applications, edited by G. Kreiss, P. Lötstedt, A. M?lqvist and M. Neytcheva. Springer-Verlag, Berlin (2010) 497–505. Zbl1216.65157
- [26] P. Knobloch and G. Lube, Local projection stabilization for advection-diffusion-reaction problems: One-level vs. two-level approach. Appl. Numer. Math.59 (2009) 2891–2907. Zbl1180.65139MR2560823
- [27] T. Knopp, G. Lube and G. Rapin, Stabilized finite element methods with shock capturing for advection-diffusion problems. Comput. Methods Appl. Mech. Engrg.191 (2002) 2997–3013. Zbl1001.76058MR1903196
- [28] O.A. Ladyzhenskaya, New equations for the description of motion of viscous incompressible fluids and solvability in the large of boundary value problems for them. Tr. Mat. Inst. Steklova102 (1967) 85–104. Zbl0202.37802
- [29] G. Lube and G. Rapin, residual-based stabilized higher-order FEM for advection-dominated problems. Comput. Methods Appl. Mech. Engrg. 195 (2006) 4124–4138. Zbl1125.76042MR2229836
- [30] G. Matthies, P. Skrzypacz and L. Tobiska, A unified convergence analysis for local projection stabilizations applied to the Oseen problem. Math. Model. Numer. Anal.41 (2007) 713–742. Zbl1188.76226MR2362912
- [31] H.-G. Roos, M. Stynes and L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion-Reaction and Flow Problems, 2nd ed. Springer-Verlag, Berlin (2008). Zbl1155.65087MR2454024
- [32] R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis North-Holland, Amsterdam (1977). Zbl0568.35002MR609732