The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A-priori estimates in weighted Hölder norms are obtained for the solutions of a one- dimensional boundary value problem for the heat equation in a domain degenerating at time t = 0 and with boundary data involving simultaneously the first order time derivative and the spatial gradient.
The paper is concerned with the solvability theory of the generalized Stokes equations arising in the study of the motion of non-Newtonian fluids.
The solvability of three linear initial-boundary value problems for the system of equations obtained by linearization of MHD equations is established. The equations contain terms corresponding to Hall and ion-slip currents. The solutions are found in the Sobolev spaces with and in anisotropic Holder spaces.
Download Results (CSV)