The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Uniqueness of complete norms for quotients of Banach function algebras

W. BadeH. Dales — 1993

Studia Mathematica

We prove that every quotient algebra of a unital Banach function algebra A has a unique complete norm if A is a Ditkin algebra. The theorem applies, for example, to the algebra A (Γ) of Fourier transforms of the group algebra L 1 ( G ) of a locally compact abelian group (with identity adjoined if Γ is not compact). In such algebras non-semisimple quotients A ( Γ ) / J ( E ) ¯ arise from closed subsets E of Γ which are sets of non-synthesis. Examples are given to show that the condition of Ditkin cannot be relaxed. We construct...

Page 1

Download Results (CSV)