Raising bounded groups and splitting of radical extensions of commutative Banach algebras
W. Bade; P. Curtis; A. Sinclair
Studia Mathematica (2000)
- Volume: 141, Issue: 1, page 85-98
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topBade, W., Curtis, P., and Sinclair, A.. "Raising bounded groups and splitting of radical extensions of commutative Banach algebras." Studia Mathematica 141.1 (2000): 85-98. <http://eudml.org/doc/216775>.
@article{Bade2000,
abstract = {Let A be a commutative unital Banach algebra and let A/ℛ be the quotient algebra of A modulo its radical ℛ. This paper is concerned with raising bounded groups in A/ℛ to bounded groups in the algebra A. The results will be applied to the problem of splitting radical extensions of certain Banach algebras.},
author = {Bade, W., Curtis, P., Sinclair, A.},
journal = {Studia Mathematica},
keywords = {Banach algebra; radical algebra; extension of Banach algebra; topological splitting; Wedderburn decomposition; Hermitian element; spectral synthesis set; Helson set},
language = {eng},
number = {1},
pages = {85-98},
title = {Raising bounded groups and splitting of radical extensions of commutative Banach algebras},
url = {http://eudml.org/doc/216775},
volume = {141},
year = {2000},
}
TY - JOUR
AU - Bade, W.
AU - Curtis, P.
AU - Sinclair, A.
TI - Raising bounded groups and splitting of radical extensions of commutative Banach algebras
JO - Studia Mathematica
PY - 2000
VL - 141
IS - 1
SP - 85
EP - 98
AB - Let A be a commutative unital Banach algebra and let A/ℛ be the quotient algebra of A modulo its radical ℛ. This paper is concerned with raising bounded groups in A/ℛ to bounded groups in the algebra A. The results will be applied to the problem of splitting radical extensions of certain Banach algebras.
LA - eng
KW - Banach algebra; radical algebra; extension of Banach algebra; topological splitting; Wedderburn decomposition; Hermitian element; spectral synthesis set; Helson set
UR - http://eudml.org/doc/216775
ER -
References
top- [AlEr] E. Albrecht and O. Ermert, Commutative nilpotent extensions of commutative C*-algebras split, Bull. London Math. Soc. 29 (1997), 601-608. Zbl0914.46044
- [BC1] W. G. Bade and P. C. Curtis, Jr., Homomorphisms of commutative Banach algebras, Amer. J. Math. 82 (1960), 589-608. Zbl0093.12503
- [BC2] W. G. Bade and P. C. Curtis, The Wedderburn decomposition of commutative Banach algebras, ibid., 851-866. Zbl0099.31903
- [BDL] W. G. Bade, H. G. Dales and Z. A. Lykova, Algebraic and strong splittings of extensions of Banach algebras, Mem. Amer. Math. Soc. 656 (1999). Zbl0931.46034
- [BD1] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, New York, 1973. Zbl0271.46039
- [BD2] F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and Elements of Normed Algebras, London Math. Soc. Lecture Note Ser. 2, Cambridge Univ. Press, 1971. Zbl0207.44802
- [BD3] F. F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Ser. 10, Cambridge Univ. Press, 1973.
- [Cu1] P. C. Curtis, Jr., Complementation problems concerning the radical of a commutative amenable Banach algebra, in: Proc. Centre Math. Anal. Austral. Nat. Univ. 21, 1989, 56-60.
- [Cu2] P. C. Curtis, Amenability, weak amenability and the close homomorphism property for commutative Banach algebras, in: Function Spaces: The Second Conference, Lecture Notes in Pure and Appl. Math. 172, Marcel Dekker, New York, 1995, 59-69. Zbl0846.46032
- [Cu1] P. C. Curtis, Jr., and R. J. Loy, The structure of amenable Banach algebras, J. London Math. Soc. (2) 40 (1989), 89-104.
- [Da] H. G. Dales, A discontinuous homomorphism from C(X), Amer. J. Math. 101 (1979), 647-734. Zbl0417.46054
- [Di] P. Dixon, Topologically nilpotent Banach algebras and factorization, Proc. Roy. Soc. Edinburgh Sect. A 119 (1991), 329-341. Zbl0762.46039
- [DS] N. Dunford and J. T. Schwartz, Linear Operators, Part I, Interscience, New York, 1958.
- [GL] E. A. Gorin and V. Ya. Lin, On a condition on the radical of a Banach algebra ensuring strong decomposability, Mat. Zametki 2 (1967), 589-592 (in Russian).
- [Gr] F. P. Greenleaf, Invariant Means on Topological Groups, Van Nostrand Math. Stud. 16, Van Nostrand, New York, 1969.
- [He] A. Ya. Helemskiĭ, Flat Banach modules and amenable algebras, Trudy Moskov. Mat. Obshch. 47 (1984), 179-218 (in Russian); English transl.: Amer. Math. Soc. Transl. 124, 1984, 199-224.
- [HP] E. Hille and R. S. Phillips, Functional Analysis and Semigroups, Amer. Math. Soc. Colloq. Publ. 31, Amer. Math. Soc., Providence, 1957.
- [Ho] G. Hochschild, On the cohomology theory for associative algebras, Ann. of Math. 46 (1945), 58-76.
- [Jo] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972).
- [Ka] H. Kamowitz, Cohomology groups of commutative Banach algebras, Trans. Amer. Math. Soc. 102 (1962), 352-372. Zbl0114.31703
- [Lu] G. Lumer, Spectral operators, Hermitian operators and bounded groups, Acta Sci. Math. (Szeged) 25 (1964), 75-85. Zbl0168.12103
- [P] T. W. Palmer, Banach Algebras and the General Theory of *-Algebras, Volume I: Algebras and Banach Algebras, Encyclopedia Math. Appl. 49, Cambridge Univ. Press, Cambridge, New York, 1994. Zbl0809.46052
- [Sa] S. Saeki, Helson sets which disobey spectral synthesis, Proc. Amer. Math. Soc. 47 (1975), 371-377. Zbl0297.43007
- [So1] M. Solovej, Wedderburn decompositions and cohomology for Banach algebras, thesis, Univ. of Leeds, 1993.
- [So2] M. Solovej, Wedderburn decompositions of commutative Banach algebras, Proc. Amer. Math. Soc. 123 (1995), 3305-3315. Zbl0844.46027
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.