# Raising bounded groups and splitting of radical extensions of commutative Banach algebras

W. Bade; P. Curtis; A. Sinclair

Studia Mathematica (2000)

- Volume: 141, Issue: 1, page 85-98
- ISSN: 0039-3223

## Access Full Article

top## Abstract

top## How to cite

topBade, W., Curtis, P., and Sinclair, A.. "Raising bounded groups and splitting of radical extensions of commutative Banach algebras." Studia Mathematica 141.1 (2000): 85-98. <http://eudml.org/doc/216775>.

@article{Bade2000,

abstract = {Let A be a commutative unital Banach algebra and let A/ℛ be the quotient algebra of A modulo its radical ℛ. This paper is concerned with raising bounded groups in A/ℛ to bounded groups in the algebra A. The results will be applied to the problem of splitting radical extensions of certain Banach algebras.},

author = {Bade, W., Curtis, P., Sinclair, A.},

journal = {Studia Mathematica},

keywords = {Banach algebra; radical algebra; extension of Banach algebra; topological splitting; Wedderburn decomposition; Hermitian element; spectral synthesis set; Helson set},

language = {eng},

number = {1},

pages = {85-98},

title = {Raising bounded groups and splitting of radical extensions of commutative Banach algebras},

url = {http://eudml.org/doc/216775},

volume = {141},

year = {2000},

}

TY - JOUR

AU - Bade, W.

AU - Curtis, P.

AU - Sinclair, A.

TI - Raising bounded groups and splitting of radical extensions of commutative Banach algebras

JO - Studia Mathematica

PY - 2000

VL - 141

IS - 1

SP - 85

EP - 98

AB - Let A be a commutative unital Banach algebra and let A/ℛ be the quotient algebra of A modulo its radical ℛ. This paper is concerned with raising bounded groups in A/ℛ to bounded groups in the algebra A. The results will be applied to the problem of splitting radical extensions of certain Banach algebras.

LA - eng

KW - Banach algebra; radical algebra; extension of Banach algebra; topological splitting; Wedderburn decomposition; Hermitian element; spectral synthesis set; Helson set

UR - http://eudml.org/doc/216775

ER -

## References

top- [AlEr] E. Albrecht and O. Ermert, Commutative nilpotent extensions of commutative C*-algebras split, Bull. London Math. Soc. 29 (1997), 601-608. Zbl0914.46044
- [BC1] W. G. Bade and P. C. Curtis, Jr., Homomorphisms of commutative Banach algebras, Amer. J. Math. 82 (1960), 589-608. Zbl0093.12503
- [BC2] W. G. Bade and P. C. Curtis, The Wedderburn decomposition of commutative Banach algebras, ibid., 851-866. Zbl0099.31903
- [BDL] W. G. Bade, H. G. Dales and Z. A. Lykova, Algebraic and strong splittings of extensions of Banach algebras, Mem. Amer. Math. Soc. 656 (1999). Zbl0931.46034
- [BD1] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, New York, 1973. Zbl0271.46039
- [BD2] F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and Elements of Normed Algebras, London Math. Soc. Lecture Note Ser. 2, Cambridge Univ. Press, 1971. Zbl0207.44802
- [BD3] F. F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Ser. 10, Cambridge Univ. Press, 1973.
- [Cu1] P. C. Curtis, Jr., Complementation problems concerning the radical of a commutative amenable Banach algebra, in: Proc. Centre Math. Anal. Austral. Nat. Univ. 21, 1989, 56-60.
- [Cu2] P. C. Curtis, Amenability, weak amenability and the close homomorphism property for commutative Banach algebras, in: Function Spaces: The Second Conference, Lecture Notes in Pure and Appl. Math. 172, Marcel Dekker, New York, 1995, 59-69. Zbl0846.46032
- [Cu1] P. C. Curtis, Jr., and R. J. Loy, The structure of amenable Banach algebras, J. London Math. Soc. (2) 40 (1989), 89-104.
- [Da] H. G. Dales, A discontinuous homomorphism from C(X), Amer. J. Math. 101 (1979), 647-734. Zbl0417.46054
- [Di] P. Dixon, Topologically nilpotent Banach algebras and factorization, Proc. Roy. Soc. Edinburgh Sect. A 119 (1991), 329-341. Zbl0762.46039
- [DS] N. Dunford and J. T. Schwartz, Linear Operators, Part I, Interscience, New York, 1958.
- [GL] E. A. Gorin and V. Ya. Lin, On a condition on the radical of a Banach algebra ensuring strong decomposability, Mat. Zametki 2 (1967), 589-592 (in Russian).
- [Gr] F. P. Greenleaf, Invariant Means on Topological Groups, Van Nostrand Math. Stud. 16, Van Nostrand, New York, 1969.
- [He] A. Ya. Helemskiĭ, Flat Banach modules and amenable algebras, Trudy Moskov. Mat. Obshch. 47 (1984), 179-218 (in Russian); English transl.: Amer. Math. Soc. Transl. 124, 1984, 199-224.
- [HP] E. Hille and R. S. Phillips, Functional Analysis and Semigroups, Amer. Math. Soc. Colloq. Publ. 31, Amer. Math. Soc., Providence, 1957.
- [Ho] G. Hochschild, On the cohomology theory for associative algebras, Ann. of Math. 46 (1945), 58-76.
- [Jo] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972).
- [Ka] H. Kamowitz, Cohomology groups of commutative Banach algebras, Trans. Amer. Math. Soc. 102 (1962), 352-372. Zbl0114.31703
- [Lu] G. Lumer, Spectral operators, Hermitian operators and bounded groups, Acta Sci. Math. (Szeged) 25 (1964), 75-85. Zbl0168.12103
- [P] T. W. Palmer, Banach Algebras and the General Theory of *-Algebras, Volume I: Algebras and Banach Algebras, Encyclopedia Math. Appl. 49, Cambridge Univ. Press, Cambridge, New York, 1994. Zbl0809.46052
- [Sa] S. Saeki, Helson sets which disobey spectral synthesis, Proc. Amer. Math. Soc. 47 (1975), 371-377. Zbl0297.43007
- [So1] M. Solovej, Wedderburn decompositions and cohomology for Banach algebras, thesis, Univ. of Leeds, 1993.
- [So2] M. Solovej, Wedderburn decompositions of commutative Banach algebras, Proc. Amer. Math. Soc. 123 (1995), 3305-3315. Zbl0844.46027

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.