The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 9 of 9

Showing per page

Order by Relevance | Title | Year of publication

Asymptotic stability for sets of polynomials

Thomas W. MüllerJan-Christoph Schlage-Puchta — 2005

Archivum Mathematicum

We introduce the concept of asymptotic stability for a set of complex functions analytic around the origin, implicitly contained in an earlier paper of the first mentioned author (“Finite group actions and asymptotic expansion of e P ( z ) ", Combinatorica 17 (1997), 523 – 554). As a consequence of our main result we find that the collection of entire functions exp ( 𝔓 ) with 𝔓 the set of all real polynomials P ( z ) satisfying Hayman’s condition [ z n ] exp ( P ( z ) ) > 0 ( n n 0 ) is asymptotically stable. This answers a question raised in loc. cit.

Page 1

Download Results (CSV)