CONTENTSIntroduction....................................................................................... 50. Set theory M.................................................................................. 61. Reflection principles in M.......................................................... 122. The trees....................................................................................... 183. Ordinal trees. Constructibility in M........................................... 254. Minimal model...
CONTENTS0. Motivation, results to be used in the sequel ................51. Slicing ’s ..........................................................102. Hereditarily countable, definable elements ................133. Spectrum of L.............................................................154. The width of elements of spectrum ............................195. Non-uniform strong definability ..................................266. Solution to a problem of Wilmers................................327....
CONTENTSIntroduction..................................................................51. Derivative of a stationary set...................................72. Stationary degrees ...............................................133. Subsets of ..............................................194. Stationary subsets of .............................255. Superstationary substes of ....................326. End-stationary subsets of ......................34References................................................................37...
Abstract
We study the 2-category of categories with finite limits, Lex. We characterise descent, effective descent and chain descent morphisms. These classes of morphisms do not coincide in Lex. We also study relations between these and other naturally arising classes of conservative morphisms. We define, in a semantical way, a new false quotient-strongly conservative factorisation in Lex. We prove that the iteration of the descent construction eventually "stops" at this factorisation....
CONTENTS Introduction........................................................................................................................................5I. Derivatives of noninteger order.........................................................................................................6II. Characteristic problem for the Mangeron polyvibrating equation of noninteger order....................17 1. The problem................................................................................................................................17 2....
Download Results (CSV)