For any prime p, we consider p-ary linear codes obtained from the span over p of rows of incidence matrices of triangular graphs, differences of the rows and adjacency matrices of line graphs of triangular graphs. We determine parameters of the codes, minimum words and automorphism groups. We also show that the codes can be used for full permutation decoding.
For k ≥ 1, the odd graph denoted by O(k), is the graph with the vertex-set Ωk, the set of all k-subsets of Ω = 1, 2, …, 2k +1, and any two of its vertices u and v constitute an edge [u, v] if and only if u ∩ v = /0. In this paper the binary code generated by the adjacency matrix of O(k) is studied. The automorphism group of the code is determined, and by identifying a suitable information set, a 2-PD-set of the order of k 4 is determined. Lastly, the relationship between the dual code from O(k)...
Download Results (CSV)