The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Knot polynomials have been used to detect and classify knots in biomolecules. Computation of knot polynomials in DNA and protein molecules have revealed the existence of knotted structures, and provided important insight into their topological structures. However, conventional knot polynomials are not well suited to study RNA molecules, as RNA structures are determined by stem regions which are not taken into account in conventional knot polynomials. In this study, we develop a new class of knot...
Download Results (CSV)