The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

On Meager Additive and Null Additive Sets in the Cantor Space 2 ω and in ℝ

Tomasz Weiss — 2009

Bulletin of the Polish Academy of Sciences. Mathematics

Let T be the standard Cantor-Lebesgue function that maps the Cantor space 2 ω onto the unit interval ⟨0,1⟩. We prove within ZFC that for every X 2 ω , X is meager additive in 2 ω iff T(X) is meager additive in ⟨0,1⟩. As a consequence, we deduce that the cartesian product of meager additive sets in ℝ remains meager additive in ℝ × ℝ. In this note, we also study the relationship between null additive sets in 2 ω and ℝ.

A note on the intersection ideal 𝒩

Tomasz Weiss — 2013

Commentationes Mathematicae Universitatis Carolinae

We prove among other theorems that it is consistent with Z F C that there exists a set X 2 ω which is not meager additive, yet it satisfies the following property: for each F σ measure zero set F , X + F belongs to the intersection ideal 𝒩 .

More remarks on the intersection ideal 𝒩

Tomasz Weiss — 2018

Commentationes Mathematicae Universitatis Carolinae

We prove in ZFC that every 𝒩 additive set is 𝒩 additive, thus we solve Problem 20 from paper [Weiss T., A note on the intersection ideal 𝒩 , Comment. Math. Univ. Carolin. 54 (2013), no. 3, 437-445] in the negative.

Page 1

Download Results (CSV)