Bounds for disconnection exponents.
We construct and study the unique random tiling of the hyperbolic plane into ideal hyperbolic triangles (with the three corners located on the boundary) that is invariant (in law) with respect to Möbius transformations, and possesses a natural spatial Markov property that can be roughly described as the conditional independence of the two parts of the triangulation on the two sides of the edge of one of its triangles.
We construct a class of conformally invariant measures on sets (or paths) and we study the critical exponents called intersection exponents associated to these measures. We show that these exponents exist and that they correspond to intersection exponents between planar Brownian motions. More precisely, using the definitions and results of our paper [27], we show that any set defined under such a conformal invariant measure behaves exactly as a pack (containing maybe a non-integer number) of Brownian...
Page 1