The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We study the regularity of the solution of the regularized electric Maxwell problem in a polygonal domain with data in . Using a duality method, we prove a decomposition of the solution into a regular part in the non-Hilbertian Sobolev space and an explicit singular one.
We consider the transmission problem for the Laplace operator in a straight cylinder with data in . Applying the theory of the sums of operators in Banach spaces, we prove that the solution admits a decomposition into a regular part in and an explicit singular part.
In this paper, we first present a polynomial-time primal-dual interior-point method (IPM) for solving linear programming (LP) problems, based on a new kernel function (KF) with a hyperbolic-logarithmic barrier term. To improve the iteration bound, we propose a parameterized version of this function. We show that the complexity result meets the currently best iteration bound for large-update methods by choosing a special value of the parameter. Numerical experiments reveal that the new KFs have better...
Download Results (CSV)