Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Polynomial automorphisms over finite fields: Mimicking tame maps by the Derksen group

Maubach, StefanWillems, Roel — 2011

Serdica Mathematical Journal

2010 Mathematics Subject Classification: 14L99, 14R10, 20B27. If F is a polynomial automorphism over a finite field Fq in dimension n, then it induces a permutation pqr(F) of (Fqr)n for every r О N*. We say that F can be “mimicked” by elements of a certain group of automorphisms G if there are gr О G such that pqr(gr) = pqr(F). Derksen’s theorem in characteristic zero states that the tame automorphisms in dimension n і 3 are generated by the affine maps and the one map (x1+x22, x2,ј,...

An analogue of the Duistermaat-van der Kallen theorem for group algebras

Wenhua ZhaoRoel Willems — 2012

Open Mathematics

Let G be a group, R an integral domain, and V G the R-subspace of the group algebra R[G] consisting of all the elements of R[G] whose coefficient of the identity element 1G of G is equal to zero. Motivated by the Mathieu conjecture [Mathieu O., Some conjectures about invariant theory and their applications, In: Algèbre non Commutative, Groupes Quantiques et Invariants, Reims, June 26–30, 1995, Sémin. Congr., 2, Société Mathématique de France, Paris, 1997, 263–279], the Duistermaat-van der Kallen...

Page 1

Download Results (CSV)