The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Groups Generated by (near) Mutually Engel Periodic Pairs

Piotr SłaninaWitold Tomaszewski — 2007

Bollettino dell'Unione Matematica Italiana

We use notations: [ x , y ] = [ x , 1 y ] and [ x , k + 1 y ] e [ [ x , k y ] , y ] . We consider groups generated by x , y satisfying relations x = [ x , n y ] , y = [ y , n x ] or [ x , y ] = [ x , n y ] , [ y , x ] = [ y , n x ] . We call groups of the first type mep-groups and of the second type nmep-groups. We show many properties and examples of mep- and nmep-groups. We prove that if p is a prime then the group S l 2 ( p ) is a nmep-group. We give the necessary and sufficient conditions for metacyclic group to be a nmep-group and we show that nmep-groups with presentation x , y [ x , y ] = [ x , 2 y ] , [ y , x ] = [ y , 2 x ] , x n , y m are finite.

Page 1

Download Results (CSV)