We apply Coevolutionary Temporal Difference Learning (CTDL) to learn small-board Go strategies represented as weighted piece counters. CTDL is a randomized learning technique which interweaves two search processes that operate in the intra-game and inter-game mode. Intra-game learning is driven by gradient-descent Temporal Difference Learning (TDL), a reinforcement learning method that updates the board evaluation function according to differences observed between its values for consecutively visited...
We propose a method that enables effective code reuse between evolutionary runs that solve a set of related visual learning tasks. We start with introducing a visual learning approach that uses genetic programming individuals to recognize objects. The process of recognition is generative, i.e., requires the learner to restore the shape of the processed object. This method is extended with a code reuse mechanism by introducing a crossbreeding operator that allows importing the genetic material from...
In test-based problems, solutions produced by search algorithms are typically assessed using average outcomes of interactions with multiple tests. This aggregation leads to information loss, which can render different solutions apparently indifferent and hinder comparison of search algorithms. In this paper we introduce the performance profile, a generic, domain-independent, multi-criteria performance evaluation method that mitigates this problem by characterizing the performance of a solution by...
Download Results (CSV)