Remarks on the Existence of Nontrivial Solutions for a Class of Volterra Equations with Smooth Kernels.
For an initial value problem u'''(x) = g(u(x)), u(0) = u'(0) = u''(0) = 0, x > 0, some theorems on existence and uniqueness of solutions are established.
We consider the problem of the existence of positive solutions u to the problem , (g ≥ 0,x > 0, n ≥ 2). It is known that if g is nondecreasing then the Osgood condition is necessary and sufficient for the existence of nontrivial solutions to the above problem. We give a similar condition for other classes of functions g.
We study the equation u = k∗g(u) with k such that ln k is convex or concave and g is monotonic. Some necessary and sufficient conditions for the existence of nontrivial continuous solutions u of this equation are given.
We consider a convolution-type integral equation u = k ⋆ g(u) on the half line (−∞; a), a ∈ ℝ, with kernel k(x) = x α−1, 0 < α, and function g(u), continuous and nondecreasing, such that g(0) = 0 and 0 < g(u) for 0 < u. We concentrate on the uniqueness problem for this equation, and we prove that if α ∈ (1, 4), then for any two nontrivial solutions u 1, u 2 there exists a constant c ∈ ℝ such that u 2(x) = u 1(x +c), −∞ < x. The results are obtained by applying Hilbert projective metrics....
Page 1